Cargando…
Performance Analysis of Linearly Arranged Concentric Circular Antenna Array with Low Sidelobe Level and Beamwidth Using Robust Tapering Technique
In this research, a novel antenna array named Linearly arranged Concentric Circular Antenna Array (LCCAA) is proposed, concerning lower beamwidth, lower sidelobe level, sharp ability to detect false signals, and impressive SINR performance. The performance of the proposed LCCAA beamformer is compare...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696082/ https://www.ncbi.nlm.nih.gov/pubmed/36422388 http://dx.doi.org/10.3390/mi13111959 |
_version_ | 1784838228396736512 |
---|---|
author | Rahaman, Imteaz Haque, Md Ashraful Singh, Narinderjit Singh Sawaran Jafor, Md. Shakiul Sarkar, Pallab Kumar Rahman, Md Afzalur Zakariya, Mohd Azman Abro, Ghulam E. Mustafa Sarker, Nayan |
author_facet | Rahaman, Imteaz Haque, Md Ashraful Singh, Narinderjit Singh Sawaran Jafor, Md. Shakiul Sarkar, Pallab Kumar Rahman, Md Afzalur Zakariya, Mohd Azman Abro, Ghulam E. Mustafa Sarker, Nayan |
author_sort | Rahaman, Imteaz |
collection | PubMed |
description | In this research, a novel antenna array named Linearly arranged Concentric Circular Antenna Array (LCCAA) is proposed, concerning lower beamwidth, lower sidelobe level, sharp ability to detect false signals, and impressive SINR performance. The performance of the proposed LCCAA beamformer is compared with geometrically identical existing beamformers using the conventional technique where the LCCAA beamformer shows the lowest beamwidth and sidelobe level (SLL) of 12.50° and −15.17 dB with equal elements accordingly. However, the performance is degraded due to look direction error, for which robust techniques, fixed diagonal loading (FDL), optimal diagonal loading (ODL), and variable diagonal loading (VDL), are applied to all the potential arrays to minimize this problem. Furthermore, the LCCAA beamformer is further simulated to reduce the sidelobe applying tapering techniques where the Hamming window shows the best performance having 17.097 dB less sidelobe level compared to the uniform window. The proposed structure is also analyzed under a robust tapered (VDL-Hamming) method which reduces around 69.92 dB and 48.39 dB more sidelobe level compared to conventional and robust techniques. Analyzing all the performances, it is clear that the proposed LCCAA beamformer is superior and provides the best performance with the proposed robust tapered (VDL-Hamming) technique. |
format | Online Article Text |
id | pubmed-9696082 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96960822022-11-26 Performance Analysis of Linearly Arranged Concentric Circular Antenna Array with Low Sidelobe Level and Beamwidth Using Robust Tapering Technique Rahaman, Imteaz Haque, Md Ashraful Singh, Narinderjit Singh Sawaran Jafor, Md. Shakiul Sarkar, Pallab Kumar Rahman, Md Afzalur Zakariya, Mohd Azman Abro, Ghulam E. Mustafa Sarker, Nayan Micromachines (Basel) Article In this research, a novel antenna array named Linearly arranged Concentric Circular Antenna Array (LCCAA) is proposed, concerning lower beamwidth, lower sidelobe level, sharp ability to detect false signals, and impressive SINR performance. The performance of the proposed LCCAA beamformer is compared with geometrically identical existing beamformers using the conventional technique where the LCCAA beamformer shows the lowest beamwidth and sidelobe level (SLL) of 12.50° and −15.17 dB with equal elements accordingly. However, the performance is degraded due to look direction error, for which robust techniques, fixed diagonal loading (FDL), optimal diagonal loading (ODL), and variable diagonal loading (VDL), are applied to all the potential arrays to minimize this problem. Furthermore, the LCCAA beamformer is further simulated to reduce the sidelobe applying tapering techniques where the Hamming window shows the best performance having 17.097 dB less sidelobe level compared to the uniform window. The proposed structure is also analyzed under a robust tapered (VDL-Hamming) method which reduces around 69.92 dB and 48.39 dB more sidelobe level compared to conventional and robust techniques. Analyzing all the performances, it is clear that the proposed LCCAA beamformer is superior and provides the best performance with the proposed robust tapered (VDL-Hamming) technique. MDPI 2022-11-11 /pmc/articles/PMC9696082/ /pubmed/36422388 http://dx.doi.org/10.3390/mi13111959 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rahaman, Imteaz Haque, Md Ashraful Singh, Narinderjit Singh Sawaran Jafor, Md. Shakiul Sarkar, Pallab Kumar Rahman, Md Afzalur Zakariya, Mohd Azman Abro, Ghulam E. Mustafa Sarker, Nayan Performance Analysis of Linearly Arranged Concentric Circular Antenna Array with Low Sidelobe Level and Beamwidth Using Robust Tapering Technique |
title | Performance Analysis of Linearly Arranged Concentric Circular Antenna Array with Low Sidelobe Level and Beamwidth Using Robust Tapering Technique |
title_full | Performance Analysis of Linearly Arranged Concentric Circular Antenna Array with Low Sidelobe Level and Beamwidth Using Robust Tapering Technique |
title_fullStr | Performance Analysis of Linearly Arranged Concentric Circular Antenna Array with Low Sidelobe Level and Beamwidth Using Robust Tapering Technique |
title_full_unstemmed | Performance Analysis of Linearly Arranged Concentric Circular Antenna Array with Low Sidelobe Level and Beamwidth Using Robust Tapering Technique |
title_short | Performance Analysis of Linearly Arranged Concentric Circular Antenna Array with Low Sidelobe Level and Beamwidth Using Robust Tapering Technique |
title_sort | performance analysis of linearly arranged concentric circular antenna array with low sidelobe level and beamwidth using robust tapering technique |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696082/ https://www.ncbi.nlm.nih.gov/pubmed/36422388 http://dx.doi.org/10.3390/mi13111959 |
work_keys_str_mv | AT rahamanimteaz performanceanalysisoflinearlyarrangedconcentriccircularantennaarraywithlowsidelobelevelandbeamwidthusingrobusttaperingtechnique AT haquemdashraful performanceanalysisoflinearlyarrangedconcentriccircularantennaarraywithlowsidelobelevelandbeamwidthusingrobusttaperingtechnique AT singhnarinderjitsinghsawaran performanceanalysisoflinearlyarrangedconcentriccircularantennaarraywithlowsidelobelevelandbeamwidthusingrobusttaperingtechnique AT jaformdshakiul performanceanalysisoflinearlyarrangedconcentriccircularantennaarraywithlowsidelobelevelandbeamwidthusingrobusttaperingtechnique AT sarkarpallabkumar performanceanalysisoflinearlyarrangedconcentriccircularantennaarraywithlowsidelobelevelandbeamwidthusingrobusttaperingtechnique AT rahmanmdafzalur performanceanalysisoflinearlyarrangedconcentriccircularantennaarraywithlowsidelobelevelandbeamwidthusingrobusttaperingtechnique AT zakariyamohdazman performanceanalysisoflinearlyarrangedconcentriccircularantennaarraywithlowsidelobelevelandbeamwidthusingrobusttaperingtechnique AT abroghulamemustafa performanceanalysisoflinearlyarrangedconcentriccircularantennaarraywithlowsidelobelevelandbeamwidthusingrobusttaperingtechnique AT sarkernayan performanceanalysisoflinearlyarrangedconcentriccircularantennaarraywithlowsidelobelevelandbeamwidthusingrobusttaperingtechnique |