Cargando…

Reliability of Computing van der Waals Bond Lengths of Some Rare Gas Diatomics

When the bond lengths of 11 molecules containing van der Waals bonds are optimized by 572 methods and 20 basis sets, it is found that the best mean absolute deviations (MADs) of density-functional theory (DFT) methods are 0.005 Å (shown by APFD/6-311++G**), 0.007 Å (B2PLYPD3(Full)/aug-cc-pVQZ), and...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yi-Liang, Li, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696166/
https://www.ncbi.nlm.nih.gov/pubmed/36430420
http://dx.doi.org/10.3390/ijms232213944
Descripción
Sumario:When the bond lengths of 11 molecules containing van der Waals bonds are optimized by 572 methods and 20 basis sets, it is found that the best mean absolute deviations (MADs) of density-functional theory (DFT) methods are 0.005 Å (shown by APFD/6-311++G**), 0.007 Å (B2PLYPD3(Full)/aug-cc-pVQZ), and 0.010 Å (revDSDPBEP86/aug-cc-pVQZ), while the best MADs of ab initio methods are 0.008 Å (BD(T)/aug-cc-pVTZ) and 0.016 Å (MP4/aug-cc-pVQZ). Moreover, the best MADs calculated by 54 selected methods in combination with 60 other basis sets (such as 6-311++G, 6-31++G(3d′f,3p′d), and UGBS1V++) are not better. Therefore, these bond lengths can be calculated with extremely high accuracy by some special methods and basis sets, and CCSD(T) is also not as good as expected because its best MAD is only 0.023 Å (CCSD(T)/aug-cc-pVQZ).