Cargando…
The Influence of Lateral Size and Oxidation of Graphene Oxide on Its Chemical Reduction and Electrical Conductivity of Reduced Graphene Oxide
The chemical reduction efficiencies of graphene oxide (GO) are critically important in achieving graphene-like properties in reduced graphene oxide (rGO). In this study, we assessed GO lateral size and its degree of oxidation effect on its chemical reduction efficiency in both suspension and film an...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696217/ https://www.ncbi.nlm.nih.gov/pubmed/36431940 http://dx.doi.org/10.3390/molecules27227840 |
_version_ | 1784838253830995968 |
---|---|
author | Sim, Hak Jin Li, Zheling Xiao, Ping Lu, Hui |
author_facet | Sim, Hak Jin Li, Zheling Xiao, Ping Lu, Hui |
author_sort | Sim, Hak Jin |
collection | PubMed |
description | The chemical reduction efficiencies of graphene oxide (GO) are critically important in achieving graphene-like properties in reduced graphene oxide (rGO). In this study, we assessed GO lateral size and its degree of oxidation effect on its chemical reduction efficiency in both suspension and film and the electrical conductivity of the corresponding rGO films. We show that while GO-reduction efficiency increases with the GO size of lower oxidation in suspension, the trend is opposite for film. FESEM, XRD, and Raman analyses reveal that the GO reduction efficiency in film is affected not only by GO size and degree of oxidation but also by its interlayer spacing (restacking) and the efficiency is tunable based on the use of mixed GO. Moreover, we show that the electrical conductivity of rGO films depends linearly on the C/O and Raman I(D)/I(G) ratio of rGO and not the lateral size of GO. In this study, an optimal chemical reduction was achieved using premixed large and small GO (L/SGO) at a ratio of 3:1 (w/w). Consequently, the highest electrical conductivity of 85,283 S/m was achieved out of all rGO films reported so far. We hope that our findings may help to pave the way for a simple and scalable method to fabricate tunable, electrically conductive rGO films for electronic applications. |
format | Online Article Text |
id | pubmed-9696217 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96962172022-11-26 The Influence of Lateral Size and Oxidation of Graphene Oxide on Its Chemical Reduction and Electrical Conductivity of Reduced Graphene Oxide Sim, Hak Jin Li, Zheling Xiao, Ping Lu, Hui Molecules Article The chemical reduction efficiencies of graphene oxide (GO) are critically important in achieving graphene-like properties in reduced graphene oxide (rGO). In this study, we assessed GO lateral size and its degree of oxidation effect on its chemical reduction efficiency in both suspension and film and the electrical conductivity of the corresponding rGO films. We show that while GO-reduction efficiency increases with the GO size of lower oxidation in suspension, the trend is opposite for film. FESEM, XRD, and Raman analyses reveal that the GO reduction efficiency in film is affected not only by GO size and degree of oxidation but also by its interlayer spacing (restacking) and the efficiency is tunable based on the use of mixed GO. Moreover, we show that the electrical conductivity of rGO films depends linearly on the C/O and Raman I(D)/I(G) ratio of rGO and not the lateral size of GO. In this study, an optimal chemical reduction was achieved using premixed large and small GO (L/SGO) at a ratio of 3:1 (w/w). Consequently, the highest electrical conductivity of 85,283 S/m was achieved out of all rGO films reported so far. We hope that our findings may help to pave the way for a simple and scalable method to fabricate tunable, electrically conductive rGO films for electronic applications. MDPI 2022-11-14 /pmc/articles/PMC9696217/ /pubmed/36431940 http://dx.doi.org/10.3390/molecules27227840 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sim, Hak Jin Li, Zheling Xiao, Ping Lu, Hui The Influence of Lateral Size and Oxidation of Graphene Oxide on Its Chemical Reduction and Electrical Conductivity of Reduced Graphene Oxide |
title | The Influence of Lateral Size and Oxidation of Graphene Oxide on Its Chemical Reduction and Electrical Conductivity of Reduced Graphene Oxide |
title_full | The Influence of Lateral Size and Oxidation of Graphene Oxide on Its Chemical Reduction and Electrical Conductivity of Reduced Graphene Oxide |
title_fullStr | The Influence of Lateral Size and Oxidation of Graphene Oxide on Its Chemical Reduction and Electrical Conductivity of Reduced Graphene Oxide |
title_full_unstemmed | The Influence of Lateral Size and Oxidation of Graphene Oxide on Its Chemical Reduction and Electrical Conductivity of Reduced Graphene Oxide |
title_short | The Influence of Lateral Size and Oxidation of Graphene Oxide on Its Chemical Reduction and Electrical Conductivity of Reduced Graphene Oxide |
title_sort | influence of lateral size and oxidation of graphene oxide on its chemical reduction and electrical conductivity of reduced graphene oxide |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696217/ https://www.ncbi.nlm.nih.gov/pubmed/36431940 http://dx.doi.org/10.3390/molecules27227840 |
work_keys_str_mv | AT simhakjin theinfluenceoflateralsizeandoxidationofgrapheneoxideonitschemicalreductionandelectricalconductivityofreducedgrapheneoxide AT lizheling theinfluenceoflateralsizeandoxidationofgrapheneoxideonitschemicalreductionandelectricalconductivityofreducedgrapheneoxide AT xiaoping theinfluenceoflateralsizeandoxidationofgrapheneoxideonitschemicalreductionandelectricalconductivityofreducedgrapheneoxide AT luhui theinfluenceoflateralsizeandoxidationofgrapheneoxideonitschemicalreductionandelectricalconductivityofreducedgrapheneoxide AT simhakjin influenceoflateralsizeandoxidationofgrapheneoxideonitschemicalreductionandelectricalconductivityofreducedgrapheneoxide AT lizheling influenceoflateralsizeandoxidationofgrapheneoxideonitschemicalreductionandelectricalconductivityofreducedgrapheneoxide AT xiaoping influenceoflateralsizeandoxidationofgrapheneoxideonitschemicalreductionandelectricalconductivityofreducedgrapheneoxide AT luhui influenceoflateralsizeandoxidationofgrapheneoxideonitschemicalreductionandelectricalconductivityofreducedgrapheneoxide |