Cargando…

An Efficient UPLC-MS/MS Method for the Determination of Pyrroloquinoline Quinone in Rat Plasma and Its Application to a Toxicokinetic Study

Pyrroloquinoline quinone (PQQ) is a powerful antioxidant coenzyme existing in diet, benefiting growth, development, cognition function, and the repair of damaged organs. However, a method for detecting PQQ in vivo was rarely described, limiting the research on the bioanalysis and metabolic propertie...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Qingmei, Hong, Yawen, Yang, Zhaoxu, He, Peixia, Chen, Chao, Wang, Jincheng, Weng, Qinjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696253/
https://www.ncbi.nlm.nih.gov/pubmed/36432048
http://dx.doi.org/10.3390/molecules27227947
Descripción
Sumario:Pyrroloquinoline quinone (PQQ) is a powerful antioxidant coenzyme existing in diet, benefiting growth, development, cognition function, and the repair of damaged organs. However, a method for detecting PQQ in vivo was rarely described, limiting the research on the bioanalysis and metabolic properties of PQQ. In this study, a novel, simple, and efficient ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method was developed and validated to quantify the concentration of PQQ in rat plasma. Detection through mass spectrometry was operated by multiple reaction monitoring (MRM) in negative electrospray ionization mode with ion transitions m/z 328.99→197.05 for PQQ and m/z 280.04→195.04 for the internal standard. The calibration curves were linear up to 10,000 ng/mL, with a lower limit of quantitation of 10 ng/mL. Inter-run and intra-run precision ranged from 1.79% to 10.73% and accuracy ranged from −7.73% to 7.30%. The method was successfully applied to a toxicokinetic study in Sprague–Dawley rats after the oral administration of PQQ disodium salt at doses of 250 mg/kg, 500 mg/kg, and 1000 mg/kg. The toxicokinetic parameters were subsequently analyzed, which may provide valuable references for the toxicokinetic properties and safety evaluation of PQQ.