Cargando…
Modeling Physiological Predictors of Running Velocity for Endurance Athletes
Background: Properly performed training is a matter of importance for endurance athletes (EA). It allows for achieving better results and safer participation. Recently, the development of machine learning methods has been observed in sports diagnostics. Velocity at anaerobic threshold (V(AT)), respi...
Autores principales: | Wiecha, Szczepan, Kasiak, Przemysław Seweryn, Cieśliński, Igor, Maciejczyk, Marcin, Mamcarz, Artur, Śliż, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696488/ https://www.ncbi.nlm.nih.gov/pubmed/36431165 http://dx.doi.org/10.3390/jcm11226688 |
Ejemplares similares
-
COVID-19 and athletes: Endurance sport and activity resilience study—CAESAR study
por: Śliż, Daniel, et al.
Publicado: (2022) -
Impact of COVID-19 Infection on Cardiorespiratory Fitness, Sleep, and Psychology of Endurance Athletes—CAESAR Study
por: Śliż, Daniel, et al.
Publicado: (2023) -
External validation of VO(2max) prediction models based on recreational and elite endurance athletes
por: Wiecha, Szczepan, et al.
Publicado: (2023) -
The Influence of Nutrition and Physical Activity on Exercise Performance after Mild COVID-19 Infection in Endurance Athletes-CESAR Study
por: Śliż, Daniel, et al.
Publicado: (2022) -
Validity of the Maximal Heart Rate Prediction Models among Runners and Cyclists
por: Kasiak, Przemysław Seweryn, et al.
Publicado: (2023)