Cargando…
Modulation of Small RNA Signatures by Astrocytes on Early Neurodegeneration Stages; Implications for Biomarker Discovery
Diagnosis of neurodegenerative disease (NDD) is complex, therefore simpler, less invasive, more accurate biomarkers are needed. small non-coding RNA (sncRNA) dysregulates in NDDs and sncRNA signatures have been explored for the diagnosis of NDDs, however, the performance of previous biomarkers is st...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696502/ https://www.ncbi.nlm.nih.gov/pubmed/36362875 http://dx.doi.org/10.3390/life12111720 |
_version_ | 1784838324518649856 |
---|---|
author | López-Cepeda, Leonardo Castro, Juan David Aristizábal-Pachón, Andrés Felipe González-Giraldo, Yeimy Pinzón, Andrés Puentes-Rozo, Pedro J. González, Janneth |
author_facet | López-Cepeda, Leonardo Castro, Juan David Aristizábal-Pachón, Andrés Felipe González-Giraldo, Yeimy Pinzón, Andrés Puentes-Rozo, Pedro J. González, Janneth |
author_sort | López-Cepeda, Leonardo |
collection | PubMed |
description | Diagnosis of neurodegenerative disease (NDD) is complex, therefore simpler, less invasive, more accurate biomarkers are needed. small non-coding RNA (sncRNA) dysregulates in NDDs and sncRNA signatures have been explored for the diagnosis of NDDs, however, the performance of previous biomarkers is still better. Astrocyte dysfunction promotes neurodegeneration and thus derived scnRNA signatures could provide a more precise way to identify of changes related to NDD course and pathogenesis, and it could be useful for the dissection of mechanistic insights operating in NDD. Often sncRNA are transported outside the cell by the action of secreted particles such as extracellular vesicles (EV), which protect sncRNA from degradation. Furthermore, EV associated sncRNA can cross the BBB to be found in easier to obtain peripheral samples, EVs also inherit cell-specific surface markers that can be used for the identification of Astrocyte Derived Extracellular Vesicles (ADEVs) in a peripheral sample. By the study of the sncRNA transported in ADEVs it is possible to identify astrocyte specific sncRNA signatures that could show astrocyte dysfunction in a more simpler manner than previous methods. However, sncRNA signatures in ADEV are not a copy of intracellular transcriptome and methodological aspects such as the yield of sncRNA produced in ADEV or the variable amount of ADEV captured after separation protocols must be considered. Here we review the role as signaling molecules of ADEV derived sncRNA dysregulated in conditions associated with risk of neurodegeneration, providing an explanation of why to choose ADEV for the identification of astrocyte-specific transcriptome. Finally, we discuss possible limitations of this approach and the need to improve the detection limits of sncRNA for the use of ADEV derived sncRNA signatures. |
format | Online Article Text |
id | pubmed-9696502 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96965022022-11-26 Modulation of Small RNA Signatures by Astrocytes on Early Neurodegeneration Stages; Implications for Biomarker Discovery López-Cepeda, Leonardo Castro, Juan David Aristizábal-Pachón, Andrés Felipe González-Giraldo, Yeimy Pinzón, Andrés Puentes-Rozo, Pedro J. González, Janneth Life (Basel) Review Diagnosis of neurodegenerative disease (NDD) is complex, therefore simpler, less invasive, more accurate biomarkers are needed. small non-coding RNA (sncRNA) dysregulates in NDDs and sncRNA signatures have been explored for the diagnosis of NDDs, however, the performance of previous biomarkers is still better. Astrocyte dysfunction promotes neurodegeneration and thus derived scnRNA signatures could provide a more precise way to identify of changes related to NDD course and pathogenesis, and it could be useful for the dissection of mechanistic insights operating in NDD. Often sncRNA are transported outside the cell by the action of secreted particles such as extracellular vesicles (EV), which protect sncRNA from degradation. Furthermore, EV associated sncRNA can cross the BBB to be found in easier to obtain peripheral samples, EVs also inherit cell-specific surface markers that can be used for the identification of Astrocyte Derived Extracellular Vesicles (ADEVs) in a peripheral sample. By the study of the sncRNA transported in ADEVs it is possible to identify astrocyte specific sncRNA signatures that could show astrocyte dysfunction in a more simpler manner than previous methods. However, sncRNA signatures in ADEV are not a copy of intracellular transcriptome and methodological aspects such as the yield of sncRNA produced in ADEV or the variable amount of ADEV captured after separation protocols must be considered. Here we review the role as signaling molecules of ADEV derived sncRNA dysregulated in conditions associated with risk of neurodegeneration, providing an explanation of why to choose ADEV for the identification of astrocyte-specific transcriptome. Finally, we discuss possible limitations of this approach and the need to improve the detection limits of sncRNA for the use of ADEV derived sncRNA signatures. MDPI 2022-10-27 /pmc/articles/PMC9696502/ /pubmed/36362875 http://dx.doi.org/10.3390/life12111720 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review López-Cepeda, Leonardo Castro, Juan David Aristizábal-Pachón, Andrés Felipe González-Giraldo, Yeimy Pinzón, Andrés Puentes-Rozo, Pedro J. González, Janneth Modulation of Small RNA Signatures by Astrocytes on Early Neurodegeneration Stages; Implications for Biomarker Discovery |
title | Modulation of Small RNA Signatures by Astrocytes on Early Neurodegeneration Stages; Implications for Biomarker Discovery |
title_full | Modulation of Small RNA Signatures by Astrocytes on Early Neurodegeneration Stages; Implications for Biomarker Discovery |
title_fullStr | Modulation of Small RNA Signatures by Astrocytes on Early Neurodegeneration Stages; Implications for Biomarker Discovery |
title_full_unstemmed | Modulation of Small RNA Signatures by Astrocytes on Early Neurodegeneration Stages; Implications for Biomarker Discovery |
title_short | Modulation of Small RNA Signatures by Astrocytes on Early Neurodegeneration Stages; Implications for Biomarker Discovery |
title_sort | modulation of small rna signatures by astrocytes on early neurodegeneration stages; implications for biomarker discovery |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696502/ https://www.ncbi.nlm.nih.gov/pubmed/36362875 http://dx.doi.org/10.3390/life12111720 |
work_keys_str_mv | AT lopezcepedaleonardo modulationofsmallrnasignaturesbyastrocytesonearlyneurodegenerationstagesimplicationsforbiomarkerdiscovery AT castrojuandavid modulationofsmallrnasignaturesbyastrocytesonearlyneurodegenerationstagesimplicationsforbiomarkerdiscovery AT aristizabalpachonandresfelipe modulationofsmallrnasignaturesbyastrocytesonearlyneurodegenerationstagesimplicationsforbiomarkerdiscovery AT gonzalezgiraldoyeimy modulationofsmallrnasignaturesbyastrocytesonearlyneurodegenerationstagesimplicationsforbiomarkerdiscovery AT pinzonandres modulationofsmallrnasignaturesbyastrocytesonearlyneurodegenerationstagesimplicationsforbiomarkerdiscovery AT puentesrozopedroj modulationofsmallrnasignaturesbyastrocytesonearlyneurodegenerationstagesimplicationsforbiomarkerdiscovery AT gonzalezjanneth modulationofsmallrnasignaturesbyastrocytesonearlyneurodegenerationstagesimplicationsforbiomarkerdiscovery |