Cargando…
The Effects of Pt-Doped TiO(2) Nanoparticles and Thickness of Semiconducting Layers at Photoanode in the Improved Performance of Dye-Sensitized Solar Cells
This work synthesized Pt-doped dye-sensitized solar cells (DSSC) with different molar ratios and thicknesses. The materials were revealed fully through X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The photovoltaic properties of the sample...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696509/ https://www.ncbi.nlm.nih.gov/pubmed/36431427 http://dx.doi.org/10.3390/ma15227941 |
_version_ | 1784838326364143616 |
---|---|
author | Mujahid, M. Al-Hartomy, Omar A. |
author_facet | Mujahid, M. Al-Hartomy, Omar A. |
author_sort | Mujahid, M. |
collection | PubMed |
description | This work synthesized Pt-doped dye-sensitized solar cells (DSSC) with different molar ratios and thicknesses. The materials were revealed fully through X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The photovoltaic properties of the sample were studied by UV-visible spectroscopy, electrochemical impedance spectroscopy (EIS), and IPEC (incident photon-to-current conversion efficiency) techniques. EIS analysis established the decrease in series resistance at the electrolyte interface. It could be one of the reasons for the increase in electron transfer rate and decrease in the recombination process at the interface. Statistical data obtained from optical and electrical investigations revealed that the electrical power-output efficiency of DSSC was 14.25%. It was found that a high ratio of Pt doping and thinner thickness can promote cell performance, owing to the reduction of series resistance, lower bandgap, and high dye adsorption. Doping TiO(2) with Pt reduced its energy bandgap and introduces intermediate energy levels inside TiO(2) to facilitate the transition of electrons at low excitation energies. The absorbance of the samples 0.15 M Pt and 0.25 M Pt showed improvement in the wavelength ranging from 200 to 800 nm by Pt doping. |
format | Online Article Text |
id | pubmed-9696509 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96965092022-11-26 The Effects of Pt-Doped TiO(2) Nanoparticles and Thickness of Semiconducting Layers at Photoanode in the Improved Performance of Dye-Sensitized Solar Cells Mujahid, M. Al-Hartomy, Omar A. Materials (Basel) Article This work synthesized Pt-doped dye-sensitized solar cells (DSSC) with different molar ratios and thicknesses. The materials were revealed fully through X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The photovoltaic properties of the sample were studied by UV-visible spectroscopy, electrochemical impedance spectroscopy (EIS), and IPEC (incident photon-to-current conversion efficiency) techniques. EIS analysis established the decrease in series resistance at the electrolyte interface. It could be one of the reasons for the increase in electron transfer rate and decrease in the recombination process at the interface. Statistical data obtained from optical and electrical investigations revealed that the electrical power-output efficiency of DSSC was 14.25%. It was found that a high ratio of Pt doping and thinner thickness can promote cell performance, owing to the reduction of series resistance, lower bandgap, and high dye adsorption. Doping TiO(2) with Pt reduced its energy bandgap and introduces intermediate energy levels inside TiO(2) to facilitate the transition of electrons at low excitation energies. The absorbance of the samples 0.15 M Pt and 0.25 M Pt showed improvement in the wavelength ranging from 200 to 800 nm by Pt doping. MDPI 2022-11-10 /pmc/articles/PMC9696509/ /pubmed/36431427 http://dx.doi.org/10.3390/ma15227941 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mujahid, M. Al-Hartomy, Omar A. The Effects of Pt-Doped TiO(2) Nanoparticles and Thickness of Semiconducting Layers at Photoanode in the Improved Performance of Dye-Sensitized Solar Cells |
title | The Effects of Pt-Doped TiO(2) Nanoparticles and Thickness of Semiconducting Layers at Photoanode in the Improved Performance of Dye-Sensitized Solar Cells |
title_full | The Effects of Pt-Doped TiO(2) Nanoparticles and Thickness of Semiconducting Layers at Photoanode in the Improved Performance of Dye-Sensitized Solar Cells |
title_fullStr | The Effects of Pt-Doped TiO(2) Nanoparticles and Thickness of Semiconducting Layers at Photoanode in the Improved Performance of Dye-Sensitized Solar Cells |
title_full_unstemmed | The Effects of Pt-Doped TiO(2) Nanoparticles and Thickness of Semiconducting Layers at Photoanode in the Improved Performance of Dye-Sensitized Solar Cells |
title_short | The Effects of Pt-Doped TiO(2) Nanoparticles and Thickness of Semiconducting Layers at Photoanode in the Improved Performance of Dye-Sensitized Solar Cells |
title_sort | effects of pt-doped tio(2) nanoparticles and thickness of semiconducting layers at photoanode in the improved performance of dye-sensitized solar cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696509/ https://www.ncbi.nlm.nih.gov/pubmed/36431427 http://dx.doi.org/10.3390/ma15227941 |
work_keys_str_mv | AT mujahidm theeffectsofptdopedtio2nanoparticlesandthicknessofsemiconductinglayersatphotoanodeintheimprovedperformanceofdyesensitizedsolarcells AT alhartomyomara theeffectsofptdopedtio2nanoparticlesandthicknessofsemiconductinglayersatphotoanodeintheimprovedperformanceofdyesensitizedsolarcells AT mujahidm effectsofptdopedtio2nanoparticlesandthicknessofsemiconductinglayersatphotoanodeintheimprovedperformanceofdyesensitizedsolarcells AT alhartomyomara effectsofptdopedtio2nanoparticlesandthicknessofsemiconductinglayersatphotoanodeintheimprovedperformanceofdyesensitizedsolarcells |