Cargando…
IPD-Net: Infrared Pedestrian Detection Network via Adaptive Feature Extraction and Coordinate Information Fusion
Infrared pedestrian detection has important theoretical research value and a wide range of application scenarios. Because of its special imaging method, infrared images can be used for pedestrian detection at night and in severe weather conditions. However, the lack of pedestrian feature information...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696594/ https://www.ncbi.nlm.nih.gov/pubmed/36433562 http://dx.doi.org/10.3390/s22228966 |
_version_ | 1784838349139214336 |
---|---|
author | Zhou, Lun Gao, Song Wang, Simin Zhang, Hengsheng Liu, Ruochen Liu, Jiaming |
author_facet | Zhou, Lun Gao, Song Wang, Simin Zhang, Hengsheng Liu, Ruochen Liu, Jiaming |
author_sort | Zhou, Lun |
collection | PubMed |
description | Infrared pedestrian detection has important theoretical research value and a wide range of application scenarios. Because of its special imaging method, infrared images can be used for pedestrian detection at night and in severe weather conditions. However, the lack of pedestrian feature information in infrared images and the small scale of pedestrian objects makes it difficult for detection networks to extract feature information and accurately detect small-scale pedestrians. To address these issues, this paper proposes an infrared pedestrian detection network based on YOLOv5, named IPD-Net. Firstly, an adaptive feature extraction module (AFEM) is designed in the backbone network section, in which a residual structure with stepwise selective kernel was included to enable the model to better extract feature information under different sizes of the receptive field. Secondly, a coordinate attention feature pyramid network (CA-FPN) is designed to enhance the deep feature map with location information through the coordinate attention module, so that the network gains better capability of object localization. Finally, shallow information is introduced into the feature fusion network to improve the detection accuracy of weak and small objects. Experimental results on the large infrared image dataset ZUT show that the mean Average Precision (mAP50) of our model is improved by 3.6% compared to that of YOLOv5s. In addition, IPD-Net shows various degrees of accuracy improvement compared to other excellent methods. |
format | Online Article Text |
id | pubmed-9696594 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96965942022-11-26 IPD-Net: Infrared Pedestrian Detection Network via Adaptive Feature Extraction and Coordinate Information Fusion Zhou, Lun Gao, Song Wang, Simin Zhang, Hengsheng Liu, Ruochen Liu, Jiaming Sensors (Basel) Article Infrared pedestrian detection has important theoretical research value and a wide range of application scenarios. Because of its special imaging method, infrared images can be used for pedestrian detection at night and in severe weather conditions. However, the lack of pedestrian feature information in infrared images and the small scale of pedestrian objects makes it difficult for detection networks to extract feature information and accurately detect small-scale pedestrians. To address these issues, this paper proposes an infrared pedestrian detection network based on YOLOv5, named IPD-Net. Firstly, an adaptive feature extraction module (AFEM) is designed in the backbone network section, in which a residual structure with stepwise selective kernel was included to enable the model to better extract feature information under different sizes of the receptive field. Secondly, a coordinate attention feature pyramid network (CA-FPN) is designed to enhance the deep feature map with location information through the coordinate attention module, so that the network gains better capability of object localization. Finally, shallow information is introduced into the feature fusion network to improve the detection accuracy of weak and small objects. Experimental results on the large infrared image dataset ZUT show that the mean Average Precision (mAP50) of our model is improved by 3.6% compared to that of YOLOv5s. In addition, IPD-Net shows various degrees of accuracy improvement compared to other excellent methods. MDPI 2022-11-19 /pmc/articles/PMC9696594/ /pubmed/36433562 http://dx.doi.org/10.3390/s22228966 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhou, Lun Gao, Song Wang, Simin Zhang, Hengsheng Liu, Ruochen Liu, Jiaming IPD-Net: Infrared Pedestrian Detection Network via Adaptive Feature Extraction and Coordinate Information Fusion |
title | IPD-Net: Infrared Pedestrian Detection Network via Adaptive Feature Extraction and Coordinate Information Fusion |
title_full | IPD-Net: Infrared Pedestrian Detection Network via Adaptive Feature Extraction and Coordinate Information Fusion |
title_fullStr | IPD-Net: Infrared Pedestrian Detection Network via Adaptive Feature Extraction and Coordinate Information Fusion |
title_full_unstemmed | IPD-Net: Infrared Pedestrian Detection Network via Adaptive Feature Extraction and Coordinate Information Fusion |
title_short | IPD-Net: Infrared Pedestrian Detection Network via Adaptive Feature Extraction and Coordinate Information Fusion |
title_sort | ipd-net: infrared pedestrian detection network via adaptive feature extraction and coordinate information fusion |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696594/ https://www.ncbi.nlm.nih.gov/pubmed/36433562 http://dx.doi.org/10.3390/s22228966 |
work_keys_str_mv | AT zhoulun ipdnetinfraredpedestriandetectionnetworkviaadaptivefeatureextractionandcoordinateinformationfusion AT gaosong ipdnetinfraredpedestriandetectionnetworkviaadaptivefeatureextractionandcoordinateinformationfusion AT wangsimin ipdnetinfraredpedestriandetectionnetworkviaadaptivefeatureextractionandcoordinateinformationfusion AT zhanghengsheng ipdnetinfraredpedestriandetectionnetworkviaadaptivefeatureextractionandcoordinateinformationfusion AT liuruochen ipdnetinfraredpedestriandetectionnetworkviaadaptivefeatureextractionandcoordinateinformationfusion AT liujiaming ipdnetinfraredpedestriandetectionnetworkviaadaptivefeatureextractionandcoordinateinformationfusion |