Cargando…
Detection and Characterization of a Novel Picornavirus in European Badger (Meles meles)
SIMPLE SUMMARY: A molecular survey was performed to investigate the gut virome of wild mustelids and sciurids found dead in Northwestern Italy. Using pan-picornavirus primer pair, we discovered a new picornavirus (PV) in the intestinal content of a European badger (Meles meles). The full-length geno...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696597/ https://www.ncbi.nlm.nih.gov/pubmed/36423093 http://dx.doi.org/10.3390/vetsci9110645 |
Sumario: | SIMPLE SUMMARY: A molecular survey was performed to investigate the gut virome of wild mustelids and sciurids found dead in Northwestern Italy. Using pan-picornavirus primer pair, we discovered a new picornavirus (PV) in the intestinal content of a European badger (Meles meles). The full-length genome of this novel strain was obtained by a sequence-independent single-primer amplification procedure in combination with Oxford Nanopore Technologies sequencing platform. On sequence analysis, the badger PV could be considered the prototype of a new species, proposed as Sakobuvirus B, classified within the still poorly characterized genus Sakobuvirus. The finding of this study poses interesting questions about the genetic diversity of these viruses, suggesting that the PV host range could be wider than expected. ABSTRACT: The recent development of unbiased metagenomic next-generation sequencing has provided a richer view of the wild animal virome making it necessary to expand the knowledge about virus diversity in wildlife, as well as to monitor their potential transmission to domestic animals or humans. In the present study, by screening collections of enteric specimens from wild animals, a novel picornavirus was identified in the intestinal content of a badger (Meles meles). By enrichment with a sequence-independent single-primer amplification (SISPA) approach and deep sequencing with Oxford Nanopore Technologies (ONT) platform, the genome sequence of a novel picornavirus strain, Badger/3A-2019/ITA, was reconstructed. On comparison based on the polyprotein sequences, the virus was distantly related (58.7% and 59.7% sequence identity at the nucleotide and amino acid level, respectively) to the feline picornavirus strain FFUP1, identified in 2012 in Portugal and classified into genus Sakobovirus within the species Sakobuvirus A. Upon phylogenetic, pairwise homology, and distance analyses performed on the P1, 2C(hel), 3C(pro), and 3D(pol) proteins and the complete genomic sequence, the badger picornavirus may be considered a member of a new sakobuvirus species, which we propose as Sakobuvirus B. |
---|