Cargando…

Strength Prediction of Ball-Milling-Modified Phosphorus Building Gypsum Based on NSGM (1,4) Model

Phosphogypsum is an industrial byproduct from the wet preparation of phosphoric acid. Phosphorus building gypsum can be obtained from phosphogypsum after high-thermal dehydration. This study aimed to analyze the influence of ball milling with different parameters on the strength of phosphorus buildi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yi, Tao, Zhong, Wu, Lei, Zhang, Zhiqi, Zhao, Zhiman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696628/
https://www.ncbi.nlm.nih.gov/pubmed/36431473
http://dx.doi.org/10.3390/ma15227988
Descripción
Sumario:Phosphogypsum is an industrial byproduct from the wet preparation of phosphoric acid. Phosphorus building gypsum can be obtained from phosphogypsum after high-thermal dehydration. This study aimed to analyze the influence of ball milling with different parameters on the strength of phosphorus building gypsum. In this paper, the absolute dry flexural strength and the absolute dry compressive strength of phosphorus building gypsum were compared under different mass ratios of material to ball, ball-milling speed, and ball-milling time, and the NSGM (1,4) model was applied to model and predict the strength of phosphorus building gypsum modified by ball milling. According to the research results, under the same mass ratio of material to ball and ball-milling speed, the absolute dry flexural strength and absolute dry compressive strength of phosphorus building gypsum firstly increased and then decreased with the increase in milling time. The NSGM (1,4) model established in this paper could effectively simulate and predict the absolute dry flexural strength and the absolute dry compressive strength of the ball-milling-modified phosphorus building gypsum; the average relative simulation errors were 12.38% and 13.77%, and the average relative prediction errors were 6.30% and 12.47%.