Cargando…

High-Performance Siamese Network for Real-Time Tracking

Target tracking algorithms based on deep learning have achieved good results in public datasets. Among them, the network tracking algorithm based on Siamese tracking has a high accuracy and fast speed, which has attracted significant attention. However, the Siamese tracker uses the AlexNet network a...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Guocai, Zhou, Peiyong, Abudurexiti, Ruxianguli, , Mahpirat, Aysa, Alimjan, Ubul, Kurban
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696770/
https://www.ncbi.nlm.nih.gov/pubmed/36433547
http://dx.doi.org/10.3390/s22228953
Descripción
Sumario:Target tracking algorithms based on deep learning have achieved good results in public datasets. Among them, the network tracking algorithm based on Siamese tracking has a high accuracy and fast speed, which has attracted significant attention. However, the Siamese tracker uses the AlexNet network as its backbone and the network layers are relatively shallow, so it does not make full use of the ability of the deep neural network. If only the backbones of target tracking are replaced, there will be no obvious improvement, such as in the cases of ResNet and Inception. Therefore, this paper designs a wider and deeper network structure. At a wider level, a mechanism that can adaptively adjust the receptive field (RF) size is designed. Firstly, multiple branches are divided by the split operator, and each branch has a different size of kernel corresponding to a different size of RF; then, the fuse operator is used to fuse the information of each branch to obtain the selection weights; and finally, according to the selection, the aggregation feature map is weighted. At a deeper level, a new kind of residual models is designed. The channel is simplified by pruning in order to improve the tracking speed. According to the above, a wider and deeper Siamese network was proposed in this paper. The experimental results show that the structure proposed in this paper achieves a good tracking effect and real-time performance on six kinds of datasets. The proposed tracker achieves an SUC and Prec of LaSOT of 0.569 and 0.571, respectively.