Cargando…
Performance Test and Thermal Insulation Effect Analysis of Basalt-Fiber Concrete
This paper examines the feasibility of applying inorganic thermal-insulating concrete in high geothermal roadways in underground coal mines. This innovative material is based on a mixture of ceramsite, glazed hollow beads, cement, and natural sand, enhanced with varying degrees of basalt fibers. Fib...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696830/ https://www.ncbi.nlm.nih.gov/pubmed/36431731 http://dx.doi.org/10.3390/ma15228236 |
Sumario: | This paper examines the feasibility of applying inorganic thermal-insulating concrete in high geothermal roadways in underground coal mines. This innovative material is based on a mixture of ceramsite, glazed hollow beads, cement, and natural sand, enhanced with varying degrees of basalt fibers. Fibers were used as a partial substitute in the mixture, in the following volumes: 0% (reference specimen), 5%, 10%, 15%, and 20%. Their compressive strength, permeability resistance, and thermal conductivity were studied. A high content of fibers tends to entangle into clumps during mixing, resulting in a significant reduction in the mechanical properties of compressive strength. The appropriate amount of fiber content can improve impermeability, and the permeability height of 5% fiber concrete was reduced by 22.5%. Experiments on thermal behavior showed that an increase of basalt fibers leads to a significant reduction in thermal conductivity. For concrete containing 20% fiber, the thermal conductivity for the reference specimen (0%) in the wet state was reduced from 0.385 W/(m∙°C) to 0.098 W/(m∙°C). There was a slight increase in thermal conductivity when the temperature increased from 30 °C to 60 °C. Despite the reduced mechanical strength, the resulting concrete is well-suited for use in the insulation of underground roadways, as numerical simulations showed that insulating concrete with optimal fiber content (15%) can reduce the average temperature of the wind flow in a high ground temperature roadway of 100 m in length in a mine by 0.3 °C. The final cost-benefit analysis showed that insulating concrete has more economic benefits and broad development prospects when applied to high geothermal roadway cooling projects. |
---|