Cargando…
RGBD Salient Object Detection, Based on Specific Object Imaging
RGBD salient object detection, based on the convolutional neural network, has achieved rapid development in recent years. However, existing models often focus on detecting salient object edges, instead of objects. Importantly, detecting objects can more intuitively display the complete information o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696882/ https://www.ncbi.nlm.nih.gov/pubmed/36433571 http://dx.doi.org/10.3390/s22228973 |
Sumario: | RGBD salient object detection, based on the convolutional neural network, has achieved rapid development in recent years. However, existing models often focus on detecting salient object edges, instead of objects. Importantly, detecting objects can more intuitively display the complete information of the detection target. To take care of this issue, we propose a RGBD salient object detection method, based on specific object imaging, which can quickly capture and process important information on object features, and effectively screen out the salient objects in the scene. The screened target objects include not only the edge of the object, but also the complete feature information of the object, which realizes the detection and imaging of the salient objects. We conduct experiments on benchmark datasets and validate with two common metrics, and the results show that our method reduces the error by 0.003 and 0.201 (MAE) on D3Net and JLDCF, respectively. In addition, our method can still achieve a very good detection and imaging performance in the case of the greatly reduced training data. |
---|