Cargando…
Sustainable–Green Synthesis of Silver Nanoparticles Using Aqueous Hyssopus officinalis and Calendula officinalis Extracts and Their Antioxidant and Antibacterial Activities
Silver nanoparticles (AgNPs) biosynthesized using aqueous medical plant extracts as reducing and capping agents show multiple applicability for bacterial problems. The aim of this study was to expand the boundaries on AgNPs using a novel, low-toxicity, and cost-effective alternative and green approa...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696917/ https://www.ncbi.nlm.nih.gov/pubmed/36431804 http://dx.doi.org/10.3390/molecules27227700 |
_version_ | 1784838428219670528 |
---|---|
author | Balciunaitiene, Aiste Puzeryte, Viktorija Radenkovs, Vitalijs Krasnova, Inta Memvanga, Patrick B. Viskelis, Pranas Streimikyte, Paulina Viskelis, Jonas |
author_facet | Balciunaitiene, Aiste Puzeryte, Viktorija Radenkovs, Vitalijs Krasnova, Inta Memvanga, Patrick B. Viskelis, Pranas Streimikyte, Paulina Viskelis, Jonas |
author_sort | Balciunaitiene, Aiste |
collection | PubMed |
description | Silver nanoparticles (AgNPs) biosynthesized using aqueous medical plant extracts as reducing and capping agents show multiple applicability for bacterial problems. The aim of this study was to expand the boundaries on AgNPs using a novel, low-toxicity, and cost-effective alternative and green approach to the biosynthesis of metallic NPs using Calendula officinalis (Calendula) and Hyssopus officinalis (Hyssopus) aqueous extracts. The formation of AgNPs was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) techniques. The effectiveness of biosynthesized AgNPs in quenching free radicals and inhibiting the growth of Gram-positive and Gram-negative microorganisms was supported by in vitro antioxidant activity assay methods and using the Kirby–Bauer disk diffusion susceptibility test, respectively. The elucidated antimicrobial and antioxidative activities of medical plant extracts were compared with data from the engineered biosynthetic AgNPs. The antimicrobial effect of engineered AgNPs against selected test cultures was found to be substantially stronger than for plant extracts used for their synthesis. The analysis of AgNPs by TEM revealed the presence of spherical-shaped nano-objects. The size distribution of AgNPs was found to be plant-type-dependent. The smaller AgNPs were obtained with Hyssopus extract (with a size range of 16.8 ± 5.8 nm compared to 35.7 ± 4.8 nm from Calendula AgNPs). The AgNPs’ presumably inherited biological functions of Hyssopus and Calendula medical plants can provide a platform to combat pathogenic bacteria in the era of multi-drug resistance. |
format | Online Article Text |
id | pubmed-9696917 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96969172022-11-26 Sustainable–Green Synthesis of Silver Nanoparticles Using Aqueous Hyssopus officinalis and Calendula officinalis Extracts and Their Antioxidant and Antibacterial Activities Balciunaitiene, Aiste Puzeryte, Viktorija Radenkovs, Vitalijs Krasnova, Inta Memvanga, Patrick B. Viskelis, Pranas Streimikyte, Paulina Viskelis, Jonas Molecules Article Silver nanoparticles (AgNPs) biosynthesized using aqueous medical plant extracts as reducing and capping agents show multiple applicability for bacterial problems. The aim of this study was to expand the boundaries on AgNPs using a novel, low-toxicity, and cost-effective alternative and green approach to the biosynthesis of metallic NPs using Calendula officinalis (Calendula) and Hyssopus officinalis (Hyssopus) aqueous extracts. The formation of AgNPs was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) techniques. The effectiveness of biosynthesized AgNPs in quenching free radicals and inhibiting the growth of Gram-positive and Gram-negative microorganisms was supported by in vitro antioxidant activity assay methods and using the Kirby–Bauer disk diffusion susceptibility test, respectively. The elucidated antimicrobial and antioxidative activities of medical plant extracts were compared with data from the engineered biosynthetic AgNPs. The antimicrobial effect of engineered AgNPs against selected test cultures was found to be substantially stronger than for plant extracts used for their synthesis. The analysis of AgNPs by TEM revealed the presence of spherical-shaped nano-objects. The size distribution of AgNPs was found to be plant-type-dependent. The smaller AgNPs were obtained with Hyssopus extract (with a size range of 16.8 ± 5.8 nm compared to 35.7 ± 4.8 nm from Calendula AgNPs). The AgNPs’ presumably inherited biological functions of Hyssopus and Calendula medical plants can provide a platform to combat pathogenic bacteria in the era of multi-drug resistance. MDPI 2022-11-09 /pmc/articles/PMC9696917/ /pubmed/36431804 http://dx.doi.org/10.3390/molecules27227700 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Balciunaitiene, Aiste Puzeryte, Viktorija Radenkovs, Vitalijs Krasnova, Inta Memvanga, Patrick B. Viskelis, Pranas Streimikyte, Paulina Viskelis, Jonas Sustainable–Green Synthesis of Silver Nanoparticles Using Aqueous Hyssopus officinalis and Calendula officinalis Extracts and Their Antioxidant and Antibacterial Activities |
title | Sustainable–Green Synthesis of Silver Nanoparticles Using Aqueous Hyssopus officinalis and Calendula officinalis Extracts and Their Antioxidant and Antibacterial Activities |
title_full | Sustainable–Green Synthesis of Silver Nanoparticles Using Aqueous Hyssopus officinalis and Calendula officinalis Extracts and Their Antioxidant and Antibacterial Activities |
title_fullStr | Sustainable–Green Synthesis of Silver Nanoparticles Using Aqueous Hyssopus officinalis and Calendula officinalis Extracts and Their Antioxidant and Antibacterial Activities |
title_full_unstemmed | Sustainable–Green Synthesis of Silver Nanoparticles Using Aqueous Hyssopus officinalis and Calendula officinalis Extracts and Their Antioxidant and Antibacterial Activities |
title_short | Sustainable–Green Synthesis of Silver Nanoparticles Using Aqueous Hyssopus officinalis and Calendula officinalis Extracts and Their Antioxidant and Antibacterial Activities |
title_sort | sustainable–green synthesis of silver nanoparticles using aqueous hyssopus officinalis and calendula officinalis extracts and their antioxidant and antibacterial activities |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696917/ https://www.ncbi.nlm.nih.gov/pubmed/36431804 http://dx.doi.org/10.3390/molecules27227700 |
work_keys_str_mv | AT balciunaitieneaiste sustainablegreensynthesisofsilvernanoparticlesusingaqueoushyssopusofficinalisandcalendulaofficinalisextractsandtheirantioxidantandantibacterialactivities AT puzeryteviktorija sustainablegreensynthesisofsilvernanoparticlesusingaqueoushyssopusofficinalisandcalendulaofficinalisextractsandtheirantioxidantandantibacterialactivities AT radenkovsvitalijs sustainablegreensynthesisofsilvernanoparticlesusingaqueoushyssopusofficinalisandcalendulaofficinalisextractsandtheirantioxidantandantibacterialactivities AT krasnovainta sustainablegreensynthesisofsilvernanoparticlesusingaqueoushyssopusofficinalisandcalendulaofficinalisextractsandtheirantioxidantandantibacterialactivities AT memvangapatrickb sustainablegreensynthesisofsilvernanoparticlesusingaqueoushyssopusofficinalisandcalendulaofficinalisextractsandtheirantioxidantandantibacterialactivities AT viskelispranas sustainablegreensynthesisofsilvernanoparticlesusingaqueoushyssopusofficinalisandcalendulaofficinalisextractsandtheirantioxidantandantibacterialactivities AT streimikytepaulina sustainablegreensynthesisofsilvernanoparticlesusingaqueoushyssopusofficinalisandcalendulaofficinalisextractsandtheirantioxidantandantibacterialactivities AT viskelisjonas sustainablegreensynthesisofsilvernanoparticlesusingaqueoushyssopusofficinalisandcalendulaofficinalisextractsandtheirantioxidantandantibacterialactivities |