Cargando…
Evaluation of Pozzolanic and Alkali-Activated Reactivity of Low-Purity Calcium Bentonite
Alkali-activated cement (AAC) is a sustainable building material with low carbon emissions, but it has a growing demand for raw materials. In this study, the potential of low-purity modified calcium bentonite (CB) as a raw material for AAC was evaluated. The thermodynamic changes and pozzolanic prop...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696941/ https://www.ncbi.nlm.nih.gov/pubmed/36431501 http://dx.doi.org/10.3390/ma15228015 |
_version_ | 1784838434700918784 |
---|---|
author | Li, Wanqiang Jiang, Chunmeng Zhang, Qin Li, Shuangxi |
author_facet | Li, Wanqiang Jiang, Chunmeng Zhang, Qin Li, Shuangxi |
author_sort | Li, Wanqiang |
collection | PubMed |
description | Alkali-activated cement (AAC) is a sustainable building material with low carbon emissions, but it has a growing demand for raw materials. In this study, the potential of low-purity modified calcium bentonite (CB) as a raw material for AAC was evaluated. The thermodynamic changes and pozzolanic properties of calcined CB were determined using X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (TG-DTA), zeta potential, and a strength activity index (SAI) test. The compressive strength test, scanning electron microscopy–energy dispersive spectrometer (SEM-EDS), and Fourier-transform infrared (FTIR) spectroscopy were performed to examine the compatibility between CB and AAC. It was revealed that CB is a low-purity clay with low-pozzolanic activity. Calcination enhanced its pozzolanic activity, and the optimum temperature is 750 °C. The incorporation of modified CB improved the mechanical properties of AAC, and low-temperature modified CB had better compatibility with AAC than the high-temperature modified CB. Calcination at 150 °C had little effect on the structure of CB, and the water absorption of montmorillonite increased the ion concentration, increasing the rate and degree of hydration. Furthermore, low-temperature calcination had a dissolution–precipitation effect, resulting in leaf-like CaO·SiO(2)·H(2)O (C-S-H) gels, whereas the high-temperature calcination of CB was very reactive, resulting in flower-like C(N)-S-H gels. |
format | Online Article Text |
id | pubmed-9696941 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96969412022-11-26 Evaluation of Pozzolanic and Alkali-Activated Reactivity of Low-Purity Calcium Bentonite Li, Wanqiang Jiang, Chunmeng Zhang, Qin Li, Shuangxi Materials (Basel) Article Alkali-activated cement (AAC) is a sustainable building material with low carbon emissions, but it has a growing demand for raw materials. In this study, the potential of low-purity modified calcium bentonite (CB) as a raw material for AAC was evaluated. The thermodynamic changes and pozzolanic properties of calcined CB were determined using X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (TG-DTA), zeta potential, and a strength activity index (SAI) test. The compressive strength test, scanning electron microscopy–energy dispersive spectrometer (SEM-EDS), and Fourier-transform infrared (FTIR) spectroscopy were performed to examine the compatibility between CB and AAC. It was revealed that CB is a low-purity clay with low-pozzolanic activity. Calcination enhanced its pozzolanic activity, and the optimum temperature is 750 °C. The incorporation of modified CB improved the mechanical properties of AAC, and low-temperature modified CB had better compatibility with AAC than the high-temperature modified CB. Calcination at 150 °C had little effect on the structure of CB, and the water absorption of montmorillonite increased the ion concentration, increasing the rate and degree of hydration. Furthermore, low-temperature calcination had a dissolution–precipitation effect, resulting in leaf-like CaO·SiO(2)·H(2)O (C-S-H) gels, whereas the high-temperature calcination of CB was very reactive, resulting in flower-like C(N)-S-H gels. MDPI 2022-11-14 /pmc/articles/PMC9696941/ /pubmed/36431501 http://dx.doi.org/10.3390/ma15228015 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Wanqiang Jiang, Chunmeng Zhang, Qin Li, Shuangxi Evaluation of Pozzolanic and Alkali-Activated Reactivity of Low-Purity Calcium Bentonite |
title | Evaluation of Pozzolanic and Alkali-Activated Reactivity of Low-Purity Calcium Bentonite |
title_full | Evaluation of Pozzolanic and Alkali-Activated Reactivity of Low-Purity Calcium Bentonite |
title_fullStr | Evaluation of Pozzolanic and Alkali-Activated Reactivity of Low-Purity Calcium Bentonite |
title_full_unstemmed | Evaluation of Pozzolanic and Alkali-Activated Reactivity of Low-Purity Calcium Bentonite |
title_short | Evaluation of Pozzolanic and Alkali-Activated Reactivity of Low-Purity Calcium Bentonite |
title_sort | evaluation of pozzolanic and alkali-activated reactivity of low-purity calcium bentonite |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696941/ https://www.ncbi.nlm.nih.gov/pubmed/36431501 http://dx.doi.org/10.3390/ma15228015 |
work_keys_str_mv | AT liwanqiang evaluationofpozzolanicandalkaliactivatedreactivityoflowpuritycalciumbentonite AT jiangchunmeng evaluationofpozzolanicandalkaliactivatedreactivityoflowpuritycalciumbentonite AT zhangqin evaluationofpozzolanicandalkaliactivatedreactivityoflowpuritycalciumbentonite AT lishuangxi evaluationofpozzolanicandalkaliactivatedreactivityoflowpuritycalciumbentonite |