Cargando…
Classification Framework of the Bearing Faults of an Induction Motor Using Wavelet Scattering Transform-Based Features
In the machine learning and data science pipelines, feature extraction is considered the most crucial component according to researchers, where generating a discriminative feature matrix is the utmost challenging task to achieve high classification accuracy. Generally, the classical feature extracti...
Autores principales: | Toma, Rafia Nishat, Gao, Yangde, Piltan, Farzin, Im, Kichang, Shon, Dongkoo, Yoon, Tae Hyun, Yoo, Dae-Seung, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696953/ https://www.ncbi.nlm.nih.gov/pubmed/36433553 http://dx.doi.org/10.3390/s22228958 |
Ejemplares similares
-
A Bearing Fault Classification Framework Based on Image Encoding Techniques and a Convolutional Neural Network under Different Operating Conditions
por: Toma, Rafia Nishat, et al.
Publicado: (2022) -
Strict-Feedback Backstepping Digital Twin and Machine Learning Solution in AE Signals for Bearing Crack Identification
por: Piltan, Farzin, et al.
Publicado: (2022) -
A Deep Autoencoder-Based Convolution Neural Network Framework for Bearing Fault Classification in Induction Motors
por: Toma, Rafia Nishat, et al.
Publicado: (2021) -
Bearing Fault Diagnosis of Induction Motors Using a Genetic Algorithm and Machine Learning Classifiers
por: Toma, Rafia Nishat, et al.
Publicado: (2020) -
A Reliable Health Indicator for Fault Prognosis of Bearings
por: Duong, Bach Phi, et al.
Publicado: (2018)