Cargando…

Stability of DL-Glyceraldehyde under Simulated Hydrothermal Conditions: Synthesis of Sugar-like Compounds in an Iron(III)-Oxide-Hydroxide-Rich Environment under Acidic Conditions

Researchers have suggested that the condensation of low-molecular-weight aldehydes under basic conditions (e.g., pH > 11) is the prebiotic reaction responsible for the abiotic formation of carbohydrates. It has also been suggested that surface hydrothermal systems were ubiquitous during the early...

Descripción completa

Detalles Bibliográficos
Autores principales: Fuentes-Carreón, Claudio Alejandro, Cruz-Castañeda, Jorge Armando, Mateo-Martí, Eva, Negrón-Mendoza, Alicia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696992/
https://www.ncbi.nlm.nih.gov/pubmed/36362973
http://dx.doi.org/10.3390/life12111818
Descripción
Sumario:Researchers have suggested that the condensation of low-molecular-weight aldehydes under basic conditions (e.g., pH > 11) is the prebiotic reaction responsible for the abiotic formation of carbohydrates. It has also been suggested that surface hydrothermal systems were ubiquitous during the early Archean period. Therefore, the catalysis of prebiotic carbohydrate synthesis by metallic oxide minerals under acidic conditions in these environments seems considerably more probable than the more widely hypothesized reaction routes. This study investigates the stability of DL-glyceraldehyde and its reaction products under the simulated conditions of an Archean surface hydrothermal system. The Hveradalur geothermal area in Iceland was selected as an analog of such a system. HPLC-ESIMS, UV–Vis spectroscopy, Raman spectroscopy and XPS spectroscopy were used to analyze the reaction products. In hot (323 K) and acidic (pH 2) solutions under the presence of suspended iron(III) oxide hydroxide powder, DL-glyceraldehyde readily decomposes into low-molecular-weight compounds and transforms into sugar-like molecules via condensation reactions.