Cargando…

Vaccination History, Body Mass Index, Age, and Baseline Gene Expression Predict Influenza Vaccination Outcomes

Seasonal influenza is a primary public health burden in the USA and globally. Annual vaccination programs are designed on the basis of circulating influenza viral strains. However, the effectiveness of the seasonal influenza vaccine is highly variable between seasons and among individuals. A number...

Descripción completa

Detalles Bibliográficos
Autores principales: Forst, Christian V., Chung, Matthew, Hockman, Megan, Lashua, Lauren, Adney, Emily, Hickey, Angela, Carlock, Michael, Ross, Ted, Ghedin, Elodie, Gresham, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697051/
https://www.ncbi.nlm.nih.gov/pubmed/36366544
http://dx.doi.org/10.3390/v14112446
_version_ 1784838463454969856
author Forst, Christian V.
Chung, Matthew
Hockman, Megan
Lashua, Lauren
Adney, Emily
Hickey, Angela
Carlock, Michael
Ross, Ted
Ghedin, Elodie
Gresham, David
author_facet Forst, Christian V.
Chung, Matthew
Hockman, Megan
Lashua, Lauren
Adney, Emily
Hickey, Angela
Carlock, Michael
Ross, Ted
Ghedin, Elodie
Gresham, David
author_sort Forst, Christian V.
collection PubMed
description Seasonal influenza is a primary public health burden in the USA and globally. Annual vaccination programs are designed on the basis of circulating influenza viral strains. However, the effectiveness of the seasonal influenza vaccine is highly variable between seasons and among individuals. A number of factors are known to influence vaccination effectiveness including age, sex, and comorbidities. Here, we sought to determine whether whole blood gene expression profiling prior to vaccination is informative about pre-existing immunological status and the immunological response to vaccine. We performed whole transcriptome analysis using RNA sequencing (RNAseq) of whole blood samples obtained prior to vaccination from 275 participants enrolled in an annual influenza vaccine trial. Serological status prior to vaccination and 28 days following vaccination was assessed using the hemagglutination inhibition assay (HAI) to define baseline immune status and the response to vaccination. We find evidence that genes with immunological functions are increased in expression in individuals with higher pre-existing immunity and in those individuals who mount a greater response to vaccination. Using a random forest model, we find that this set of genes can be used to predict vaccine response with a performance similar to a model that incorporates physiological and prior vaccination status alone. A model using both gene expression and physiological factors has the greatest predictive power demonstrating the potential utility of molecular profiling for enhancing prediction of vaccine response. Moreover, expression of genes that are associated with enhanced vaccination response may point to additional biological pathways that contribute to mounting a robust immunological response to the seasonal influenza vaccine.
format Online
Article
Text
id pubmed-9697051
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96970512022-11-26 Vaccination History, Body Mass Index, Age, and Baseline Gene Expression Predict Influenza Vaccination Outcomes Forst, Christian V. Chung, Matthew Hockman, Megan Lashua, Lauren Adney, Emily Hickey, Angela Carlock, Michael Ross, Ted Ghedin, Elodie Gresham, David Viruses Article Seasonal influenza is a primary public health burden in the USA and globally. Annual vaccination programs are designed on the basis of circulating influenza viral strains. However, the effectiveness of the seasonal influenza vaccine is highly variable between seasons and among individuals. A number of factors are known to influence vaccination effectiveness including age, sex, and comorbidities. Here, we sought to determine whether whole blood gene expression profiling prior to vaccination is informative about pre-existing immunological status and the immunological response to vaccine. We performed whole transcriptome analysis using RNA sequencing (RNAseq) of whole blood samples obtained prior to vaccination from 275 participants enrolled in an annual influenza vaccine trial. Serological status prior to vaccination and 28 days following vaccination was assessed using the hemagglutination inhibition assay (HAI) to define baseline immune status and the response to vaccination. We find evidence that genes with immunological functions are increased in expression in individuals with higher pre-existing immunity and in those individuals who mount a greater response to vaccination. Using a random forest model, we find that this set of genes can be used to predict vaccine response with a performance similar to a model that incorporates physiological and prior vaccination status alone. A model using both gene expression and physiological factors has the greatest predictive power demonstrating the potential utility of molecular profiling for enhancing prediction of vaccine response. Moreover, expression of genes that are associated with enhanced vaccination response may point to additional biological pathways that contribute to mounting a robust immunological response to the seasonal influenza vaccine. MDPI 2022-11-04 /pmc/articles/PMC9697051/ /pubmed/36366544 http://dx.doi.org/10.3390/v14112446 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Forst, Christian V.
Chung, Matthew
Hockman, Megan
Lashua, Lauren
Adney, Emily
Hickey, Angela
Carlock, Michael
Ross, Ted
Ghedin, Elodie
Gresham, David
Vaccination History, Body Mass Index, Age, and Baseline Gene Expression Predict Influenza Vaccination Outcomes
title Vaccination History, Body Mass Index, Age, and Baseline Gene Expression Predict Influenza Vaccination Outcomes
title_full Vaccination History, Body Mass Index, Age, and Baseline Gene Expression Predict Influenza Vaccination Outcomes
title_fullStr Vaccination History, Body Mass Index, Age, and Baseline Gene Expression Predict Influenza Vaccination Outcomes
title_full_unstemmed Vaccination History, Body Mass Index, Age, and Baseline Gene Expression Predict Influenza Vaccination Outcomes
title_short Vaccination History, Body Mass Index, Age, and Baseline Gene Expression Predict Influenza Vaccination Outcomes
title_sort vaccination history, body mass index, age, and baseline gene expression predict influenza vaccination outcomes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697051/
https://www.ncbi.nlm.nih.gov/pubmed/36366544
http://dx.doi.org/10.3390/v14112446
work_keys_str_mv AT forstchristianv vaccinationhistorybodymassindexageandbaselinegeneexpressionpredictinfluenzavaccinationoutcomes
AT chungmatthew vaccinationhistorybodymassindexageandbaselinegeneexpressionpredictinfluenzavaccinationoutcomes
AT hockmanmegan vaccinationhistorybodymassindexageandbaselinegeneexpressionpredictinfluenzavaccinationoutcomes
AT lashualauren vaccinationhistorybodymassindexageandbaselinegeneexpressionpredictinfluenzavaccinationoutcomes
AT adneyemily vaccinationhistorybodymassindexageandbaselinegeneexpressionpredictinfluenzavaccinationoutcomes
AT hickeyangela vaccinationhistorybodymassindexageandbaselinegeneexpressionpredictinfluenzavaccinationoutcomes
AT carlockmichael vaccinationhistorybodymassindexageandbaselinegeneexpressionpredictinfluenzavaccinationoutcomes
AT rossted vaccinationhistorybodymassindexageandbaselinegeneexpressionpredictinfluenzavaccinationoutcomes
AT ghedinelodie vaccinationhistorybodymassindexageandbaselinegeneexpressionpredictinfluenzavaccinationoutcomes
AT greshamdavid vaccinationhistorybodymassindexageandbaselinegeneexpressionpredictinfluenzavaccinationoutcomes