Cargando…
An Advanced Data Fusion Method to Improve Wetland Classification Using Multi-Source Remotely Sensed Data
The goal of this research was to improve wetland classification by fully exploiting multi-source remotely sensed data. Three distinct classifiers were designed to distinguish individual or compound wetland categories using random forest (RF) classification. They were determined, in part, to best use...
Autores principales: | Judah, Aaron, Hu, Baoxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697073/ https://www.ncbi.nlm.nih.gov/pubmed/36433540 http://dx.doi.org/10.3390/s22228942 |
Ejemplares similares
-
Application of convolutional neural network in fusion and classification of multi-source remote sensing data
por: Ye, Fanghong, et al.
Publicado: (2022) -
Classification methods for remotely sensed data /
por: Tso, Brandt
Publicado: (2009) -
Research on land cover classification of multi-source remote sensing data based on improved U-net network
por: Zhang, Guanjin, et al.
Publicado: (2023) -
Using GIS Remote Sensing Image Data for Wetland Monitoring and Environmental Simulation
por: Cheng, Qian, et al.
Publicado: (2022) -
A Review of Wetland Remote Sensing
por: Guo, Meng, et al.
Publicado: (2017)