Cargando…
Phosphorylated Metal–Organic Framework for Reducing Fire Hazards of Poly(Methyl Methacrylate)
The low fire safety performance (flame retardant and antistatic properties) of poly(methyl methacrylate) (PMMA) has severely limited practical applications. Here, a phosphorylated Zn-based metal–organic framework (ZIF-8-P) is employed as an effective flame retardant and antistatic agent to reduce th...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697107/ https://www.ncbi.nlm.nih.gov/pubmed/36432999 http://dx.doi.org/10.3390/polym14224871 |
Sumario: | The low fire safety performance (flame retardant and antistatic properties) of poly(methyl methacrylate) (PMMA) has severely limited practical applications. Here, a phosphorylated Zn-based metal–organic framework (ZIF-8-P) is employed as an effective flame retardant and antistatic agent to reduce the fire risk of PMMA. Encouragingly, the as-prepared PMMA/ZIF-8-P composite demonstrated not merely better mechanical properties (e.g., a rise of ca. 136.9% and 175.0% in the reduced modulus and hardness; a higher storage modulus), but also efficient fire safety properties (e.g., lower surface resistance; a decrease of ca. 73.1% in the peak heat release rate; a lower amount of total pyrolysis products), surpassing those of pure PMMA and a PMMA/ZIF-8 composite without phytic acid modification. Mechanism analysis is conducted to reveal the critical role of catalytic charring, char reinforcing, and the dilution of nonflammable gases from ZIF-8 additives during the combustion and pyrolysis process. Our study paves a promising way to achieve high performance PMMA composites. |
---|