Cargando…

Essential Oils from the Leaves, Stem, and Roots of Blumea lanceolaria (Roxb.) Druce in Vietnam: Determination of Chemical Composition, and In Vitro, In Vivo, and In Silico Studies on Anti-Inflammatory Activity

Blumea lanceolaria (Roxb.) Druce, a flowering plant, is used for treating cancer and inflammatory diseases. In this study, we determined the chemical composition of the EOs extracted from the leaves (LBEO), stem (SBEO), and roots (RBEO) of B. lanceolaria and analyzed their anti-inflammation potentia...

Descripción completa

Detalles Bibliográficos
Autores principales: Do, Thi Thanh Huyen, Nguyen, Thi Uyen, Nguyen, Thi Thu Huyen, Ho, Thi Yen, Pham, Thi Luong Hang, Le, Tho Son, Nguyen, Thi Hong Van, Nguyen, Phi-Hung, Nguyen, Quang Huy, Nguyen, Van Sang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697122/
https://www.ncbi.nlm.nih.gov/pubmed/36431950
http://dx.doi.org/10.3390/molecules27227839
Descripción
Sumario:Blumea lanceolaria (Roxb.) Druce, a flowering plant, is used for treating cancer and inflammatory diseases. In this study, we determined the chemical composition of the EOs extracted from the leaves (LBEO), stem (SBEO), and roots (RBEO) of B. lanceolaria and analyzed their anti-inflammation potential. Overall, 30 compounds representing 99.12%, 98.44%, and 96.89% of total EO constituents of the leaves, stem, and roots, respectively, were identified using GC-MS. ELISA, Western blotting, and qRT-PCR studies showed that LBEO, SBEO, and RBEO inhibited multiple steps in the inflammatory responses in the RAW 264.7 cell model, including NO production; TNF-α, IL-6, iNOS, and COX-2 transcription and translation; and phosphorylation of IκBα and p65 of the NF-κB pathway. In the carrageenan-induced paw edema model, all three EOs inhibited paw edema at both early and delayed phases. Molecular docking studies indicated that the main components of B. lanceolaria EOs (BEOs) targeted and inhibited major components of inflammation-related pathways, including the arachidonic acid metabolic pathway, NF-κB pathway, and MAPK pathway. We present the first study to characterize the chemical composition of BEOs and confirm their potent anti-inflammatory effects in in vitro, in vivo, and in silico analysis. These results can facilitate the development of effective anti-inflammatory drugs with limited side effects in the future.