Cargando…
A Multimodal Ensemble Driven by Multiobjective Optimisation to Predict Overall Survival in Non-Small-Cell Lung Cancer
Lung cancer accounts for more deaths worldwide than any other cancer disease. In order to provide patients with the most effective treatment for these aggressive tumours, multimodal learning is emerging as a new and promising field of research that aims to extract complementary information from the...
Autores principales: | Caruso, Camillo Maria, Guarrasi, Valerio, Cordelli, Ermanno, Sicilia, Rosa, Gentile, Silvia, Messina, Laura, Fiore, Michele, Piccolo, Claudia, Beomonte Zobel, Bruno, Iannello, Giulio, Ramella, Sara, Soda, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697158/ https://www.ncbi.nlm.nih.gov/pubmed/36354871 http://dx.doi.org/10.3390/jimaging8110298 |
Ejemplares similares
-
3T MRI-Radiomic Approach to Predict for Lymph Node Status in Breast Cancer Patients
por: Santucci, Domiziana, et al.
Publicado: (2021) -
Pareto optimization of deep networks for COVID-19 diagnosis from chest X-rays
por: Guarrasi, Valerio, et al.
Publicado: (2022) -
CNN-Based Approaches with Different Tumor Bounding Options for Lymph Node Status Prediction in Breast DCE-MRI
por: Santucci, Domiziana, et al.
Publicado: (2022) -
Visual4DTracker: a tool to interact with 3D + t image stacks
por: Cordelli, Ermanno, et al.
Publicado: (2021) -
The Impact of Tumor Edema on T2-Weighted 3T-MRI Invasive Breast Cancer Histological Characterization: A Pilot Radiomics Study
por: Santucci, Domiziana, et al.
Publicado: (2021)