Cargando…
Hierarchical Voting-Based Feature Selection and Ensemble Learning Model Scheme for Glioma Grading with Clinical and Molecular Characteristics
Determining the aggressiveness of gliomas, termed grading, is a critical step toward treatment optimization to increase the survival rate and decrease treatment toxicity for patients. Streamlined grading using molecular information has the potential to facilitate decision making in the clinic and ai...
Autores principales: | Tasci, Erdal, Zhuge, Ying, Kaur, Harpreet, Camphausen, Kevin, Krauze, Andra Valentina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697273/ https://www.ncbi.nlm.nih.gov/pubmed/36430631 http://dx.doi.org/10.3390/ijms232214155 |
Ejemplares similares
-
GradWise: A Novel Application of a Rank-Based Weighted Hybrid Filter and Embedded Feature Selection Method for Glioma Grading with Clinical and Molecular Characteristics
por: Tasci, Erdal, et al.
Publicado: (2023) -
Cost Matrix of Molecular Pathology in Glioma—Towards AI-Driven Rational Molecular Testing and Precision Care for the Future
por: Jagasia, Sarisha, et al.
Publicado: (2022) -
The Next Frontier in Health Disparities—A Closer Look at Exploring Sex Differences in Glioma Data and Omics Analysis, from Bench to Bedside and Back
por: Diaz Rosario, Maria, et al.
Publicado: (2022) -
Bias and Class Imbalance in Oncologic Data—Towards Inclusive and Transferrable AI in Large Scale Oncology Data Sets
por: Tasci, Erdal, et al.
Publicado: (2022) -
RadWise: A Rank-Based Hybrid Feature Weighting and Selection Method for Proteomic Categorization of Chemoirradiation in Patients with Glioblastoma
por: Tasci, Erdal, et al.
Publicado: (2023)