Cargando…
Attention-Based Multiscale Feature Pyramid Network for Corn Pest Detection under Wild Environment
SIMPLE SUMMARY: Corn pest recognition and detection is an important step for Integrated Pest Management. Generally, traditional methods adopt manual observation and counting in wild field to monitor the occurrence degree of corn pests. However, this is time-consuming and labor-intensive. An accurate...
Autores principales: | Kang, Chenrui, Jiao, Lin, Wang, Rujing, Liu, Zhigui, Du, Jianming, Hu, Haiying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697377/ https://www.ncbi.nlm.nih.gov/pubmed/36354802 http://dx.doi.org/10.3390/insects13110978 |
Ejemplares similares
-
Automatic Crop Pest Detection Oriented Multiscale Feature Fusion Approach
por: Dong, Shifeng, et al.
Publicado: (2022) -
Feature Refinement Method Based on the Two-Stage Detection Framework for Similar Pest Detection in the Field
por: Chen, Hongbo, et al.
Publicado: (2023) -
AgriPest: A Large-Scale Domain-Specific Benchmark Dataset for Practical Agricultural Pest Detection in the Wild
por: Wang, Rujing, et al.
Publicado: (2021) -
TD-Det: A Tiny Size Dense Aphid Detection Network under In-Field Environment
por: Teng, Yue, et al.
Publicado: (2022) -
GRPAFusion: A Gradient Residual and Pyramid Attention-Based Multiscale Network for Multimodal Image Fusion
por: Wang, Jinxin, et al.
Publicado: (2023)