Cargando…
Do Serum 25-Hydroxyvitamin D Concentrations Affect Body Composition, Physical Fitness, Bone Strength and Bone Biomarkers in Female Children and Adolescent Football Players? A One-Season Study
The aim was to compare changes in body composition, physical fitness, and bone biomarkers in female children and adolescent football players with different Vitamin D levels. Twenty-two players were classified into two groups according to 25(OH)D concentrations: 11 with deficient/insufficient 25(OH)D...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697430/ https://www.ncbi.nlm.nih.gov/pubmed/36430113 http://dx.doi.org/10.3390/ijerph192215394 |
Sumario: | The aim was to compare changes in body composition, physical fitness, and bone biomarkers in female children and adolescent football players with different Vitamin D levels. Twenty-two players were classified into two groups according to 25(OH)D concentrations: 11 with deficient/insufficient 25(OH)D levels (IVD; <30 ng/mL) and 11 with sufficient 25(OH)D levels (SVD; ≥30 ng/mL). Body composition parameters were measured using dual-energy X-ray absorptiometry and a peripheral quantitative computed tomography scanner. The following physical fitness tests were applied: maximal isometric knee extension (MIF), long jump, 30-m sprint, and 20-m shuttle run test (VO(2max)). Electrochemiluminescence immunoassays were used to analyze bone biomarkers and 25(OH)D. All variables were registered at the beginning and the end of the football season. The increase in subtotal bone mineral density (BMD) was higher in players with SVD than those with IVD (p = 0.030). Only players with SVD improved their MIF of the left leg (p = 0.005); whereas, only players with IVD decreased their 30-m sprint performance (p = 0.007) and VO(2max) (p = 0.046). No significant between- and within-group differences were found for bone biomarkers. SVD might cause an extra improvement of subtotal BMD in female children and adolescent football players. Moreover, it seems that the 25(OH)D concentration could be an important parameter for physical fitness improvement in this population. |
---|