Cargando…

Enhanced Robustness of a Bridge-Type Rf-Mems Switch for Enabling Applications in 5G and 6G Communications

In this paper, new suspended-membrane double-ohmic-contact RF-MEMS switch configurations are proposed. Double-diagonal (DDG) beam suspensions, with either two or three anchoring points, are designed and optimized to minimize membrane deformation due to residual fabrication stresses, thus exhibiting...

Descripción completa

Detalles Bibliográficos
Autores principales: Casals-Terré, Jasmina, Pradell, Lluís, Heredia, Julio César, Giacomozzi, Flavio, Iannacci, Jacopo, Contreras, Adrián, Ribó, Miquel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697462/
https://www.ncbi.nlm.nih.gov/pubmed/36433499
http://dx.doi.org/10.3390/s22228893
Descripción
Sumario:In this paper, new suspended-membrane double-ohmic-contact RF-MEMS switch configurations are proposed. Double-diagonal (DDG) beam suspensions, with either two or three anchoring points, are designed and optimized to minimize membrane deformation due to residual fabrication stresses, thus exhibiting smaller mechanical deformation and a higher stiffness with more release force than previously designed single diagonal beam suspensions. The two-anchor DDGs are designed in two different orientations, in-line and 90°-rotated. The membrane may include a window to minimize the coupling to the lower electrode. The devices are integrated in a coplanar-waveguide transmission structure and fabricated using an eight-mask surface-micro-machining process on high-resistivity silicon, with dielectric-free actuation electrodes, and including glass protective caps. The RF-MEMS switch behavior is assessed from measurements of the device S parameters in ON and OFF states. The fabricated devices feature a measured pull-in voltage of 76.5 V/60 V for the windowed/not-windowed two-anchor DDG membranes, and 54 V/49.5 V for the windowed/not-windowed three-anchor DDG membranes, with a good agreement with mechanical 3D simulations. The measured ON-state insertion loss is better than 0.7 dB/0.8 dB and the isolation in the OFF state is better than 40 dB/31 dB up to 20 GHz for the in-line/90°-rotated devices, also in good agreement with 2.5D electromagnetic simulations.