Cargando…
YOLOv4-Tiny-Based Coal Gangue Image Recognition and FPGA Implementation
Nowadays, most of the deep learning coal gangue identification methods need to be performed on high-performance CPU or GPU hardware devices, which are inconvenient to use in complex underground coal mine environments due to their high power consumption, huge size, and significant heat generation. Ai...
Autores principales: | Xu, Shanyong, Zhou, Yujie, Huang, Yourui, Han, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697515/ https://www.ncbi.nlm.nih.gov/pubmed/36422413 http://dx.doi.org/10.3390/mi13111983 |
Ejemplares similares
-
Target Recognition of Coal and Gangue Based on Improved YOLOv5s and Spectral Technology
por: Yan, Pengcheng, et al.
Publicado: (2023) -
Improved YOLOv7 Network Model for Gangue Selection Robot for Gangue and Foreign Matter Detection in Coal
por: Yang, Dengjie, et al.
Publicado: (2023) -
Coal gangue recognition based on spectral imaging combined with XGBoost
por: Zhou, Minghao, et al.
Publicado: (2023) -
Research on Insulator Defect Detection Based on an Improved MobilenetV1-YOLOv4
por: Xu, Shanyong, et al.
Publicado: (2022) -
Research on Recognition of Coal and Gangue Based on Laser Speckle Images
por: Li, Hequn, et al.
Publicado: (2023)