Cargando…

Monitoring Ambient Parameters in the IoT Precision Agriculture Scenario: An Approach to Sensor Selection and Hydroponic Saffron Cultivation

The world population is on the rise, which demands higher food production. The reduction in the amount of land under cultivation due to urbanization makes this more challenging. The solution to this problem lies in the artificial cultivation of crops. IoT and sensors play an important role in optimi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kour, Kanwalpreet, Gupta, Deepali, Gupta, Kamali, Anand, Divya, Elkamchouchi, Dalia H., Pérez-Oleaga, Cristina Mazas, Ibrahim, Muhammad, Goyal, Nitin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697548/
https://www.ncbi.nlm.nih.gov/pubmed/36433502
http://dx.doi.org/10.3390/s22228905
_version_ 1784838591571034112
author Kour, Kanwalpreet
Gupta, Deepali
Gupta, Kamali
Anand, Divya
Elkamchouchi, Dalia H.
Pérez-Oleaga, Cristina Mazas
Ibrahim, Muhammad
Goyal, Nitin
author_facet Kour, Kanwalpreet
Gupta, Deepali
Gupta, Kamali
Anand, Divya
Elkamchouchi, Dalia H.
Pérez-Oleaga, Cristina Mazas
Ibrahim, Muhammad
Goyal, Nitin
author_sort Kour, Kanwalpreet
collection PubMed
description The world population is on the rise, which demands higher food production. The reduction in the amount of land under cultivation due to urbanization makes this more challenging. The solution to this problem lies in the artificial cultivation of crops. IoT and sensors play an important role in optimizing the artificial cultivation of crops. The selection of sensors is important in order to ensure a better quality and yield in an automated artificial environment. There are many challenges involved in selecting sensors due to the highly competitive market. This paper provides a novel approach to sensor selection for saffron cultivation in an IoT-based environment. The crop used in this study is saffron due to the reason that much less research has been conducted on its hydroponic cultivation using sensors and its huge economic impact. A detailed hardware-based framework, the growth cycle of the crop, along with all the sensors, and the block layout used for saffron cultivation in a hydroponic medium are provided. The important parameters for a hydroponic medium, such as the concentration of nutrients and flow rate required, are discussed in detail. This paper is the first of its kind to explain the sensor configurations, performance metrics, and sensor-based saffron cultivation model. The paper discusses different metrics related to the selection, use and role of sensors in different IoT-based saffron cultivation practices. A smart hydroponic setup for saffron cultivation is proposed. The results of the model are evaluated using the AquaCrop simulator. The simulator is used to evaluate the value of performance metrics such as the yield, harvest index, water productivity, and biomass. The values obtained provide better results as compared to natural cultivation.
format Online
Article
Text
id pubmed-9697548
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96975482022-11-26 Monitoring Ambient Parameters in the IoT Precision Agriculture Scenario: An Approach to Sensor Selection and Hydroponic Saffron Cultivation Kour, Kanwalpreet Gupta, Deepali Gupta, Kamali Anand, Divya Elkamchouchi, Dalia H. Pérez-Oleaga, Cristina Mazas Ibrahim, Muhammad Goyal, Nitin Sensors (Basel) Article The world population is on the rise, which demands higher food production. The reduction in the amount of land under cultivation due to urbanization makes this more challenging. The solution to this problem lies in the artificial cultivation of crops. IoT and sensors play an important role in optimizing the artificial cultivation of crops. The selection of sensors is important in order to ensure a better quality and yield in an automated artificial environment. There are many challenges involved in selecting sensors due to the highly competitive market. This paper provides a novel approach to sensor selection for saffron cultivation in an IoT-based environment. The crop used in this study is saffron due to the reason that much less research has been conducted on its hydroponic cultivation using sensors and its huge economic impact. A detailed hardware-based framework, the growth cycle of the crop, along with all the sensors, and the block layout used for saffron cultivation in a hydroponic medium are provided. The important parameters for a hydroponic medium, such as the concentration of nutrients and flow rate required, are discussed in detail. This paper is the first of its kind to explain the sensor configurations, performance metrics, and sensor-based saffron cultivation model. The paper discusses different metrics related to the selection, use and role of sensors in different IoT-based saffron cultivation practices. A smart hydroponic setup for saffron cultivation is proposed. The results of the model are evaluated using the AquaCrop simulator. The simulator is used to evaluate the value of performance metrics such as the yield, harvest index, water productivity, and biomass. The values obtained provide better results as compared to natural cultivation. MDPI 2022-11-17 /pmc/articles/PMC9697548/ /pubmed/36433502 http://dx.doi.org/10.3390/s22228905 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kour, Kanwalpreet
Gupta, Deepali
Gupta, Kamali
Anand, Divya
Elkamchouchi, Dalia H.
Pérez-Oleaga, Cristina Mazas
Ibrahim, Muhammad
Goyal, Nitin
Monitoring Ambient Parameters in the IoT Precision Agriculture Scenario: An Approach to Sensor Selection and Hydroponic Saffron Cultivation
title Monitoring Ambient Parameters in the IoT Precision Agriculture Scenario: An Approach to Sensor Selection and Hydroponic Saffron Cultivation
title_full Monitoring Ambient Parameters in the IoT Precision Agriculture Scenario: An Approach to Sensor Selection and Hydroponic Saffron Cultivation
title_fullStr Monitoring Ambient Parameters in the IoT Precision Agriculture Scenario: An Approach to Sensor Selection and Hydroponic Saffron Cultivation
title_full_unstemmed Monitoring Ambient Parameters in the IoT Precision Agriculture Scenario: An Approach to Sensor Selection and Hydroponic Saffron Cultivation
title_short Monitoring Ambient Parameters in the IoT Precision Agriculture Scenario: An Approach to Sensor Selection and Hydroponic Saffron Cultivation
title_sort monitoring ambient parameters in the iot precision agriculture scenario: an approach to sensor selection and hydroponic saffron cultivation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697548/
https://www.ncbi.nlm.nih.gov/pubmed/36433502
http://dx.doi.org/10.3390/s22228905
work_keys_str_mv AT kourkanwalpreet monitoringambientparametersintheiotprecisionagriculturescenarioanapproachtosensorselectionandhydroponicsaffroncultivation
AT guptadeepali monitoringambientparametersintheiotprecisionagriculturescenarioanapproachtosensorselectionandhydroponicsaffroncultivation
AT guptakamali monitoringambientparametersintheiotprecisionagriculturescenarioanapproachtosensorselectionandhydroponicsaffroncultivation
AT ananddivya monitoringambientparametersintheiotprecisionagriculturescenarioanapproachtosensorselectionandhydroponicsaffroncultivation
AT elkamchouchidaliah monitoringambientparametersintheiotprecisionagriculturescenarioanapproachtosensorselectionandhydroponicsaffroncultivation
AT perezoleagacristinamazas monitoringambientparametersintheiotprecisionagriculturescenarioanapproachtosensorselectionandhydroponicsaffroncultivation
AT ibrahimmuhammad monitoringambientparametersintheiotprecisionagriculturescenarioanapproachtosensorselectionandhydroponicsaffroncultivation
AT goyalnitin monitoringambientparametersintheiotprecisionagriculturescenarioanapproachtosensorselectionandhydroponicsaffroncultivation