Cargando…
Parameters and Measurement Techniques of Reconfigurable Intelligent Surfaces
Reconfigurable intelligent surface (RIS)-aided wireless communications systems are one the promising wireless communication system where the wave can be guided by the RIS. It is envisioned that beyond-5G/6G communication will have a low-cost, high spectral efficiency, high energy efficiency, and sma...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697697/ https://www.ncbi.nlm.nih.gov/pubmed/36363862 http://dx.doi.org/10.3390/mi13111841 |
Sumario: | Reconfigurable intelligent surface (RIS)-aided wireless communications systems are one the promising wireless communication system where the wave can be guided by the RIS. It is envisioned that beyond-5G/6G communication will have a low-cost, high spectral efficiency, high energy efficiency, and smart wireless environment. In this paper, initially, different measurement techniques of the RIS have been discussed, which are available in the literature. Then, a new type of RIS has been proposed. Finally, a different parameter measurement technique for our proposed RIS has been presented. A low-cost FR4 substrate with a height of 1.6 mm was considered to design the RIS in the sub-6 GHz frequency band. Another important thing is that our proposed IRS is a single-layer substrate backed by a copper plate. The area of each unit cell was 42 mm × 42 mm. The RIS was designed to operate at the central frequency of the 3.5 GHz frequency band. The novelty of the proposed RIS is that it is a polarization-independent structure. Thus, polarization-related losses can be overcome using this structure. A 10×10-unit cell array was designed to check the radiation performance. The magnitude of the reflection coefficients was measured in our laboratory for the proposed configuration. |
---|