Cargando…
Rapid Detection of Fraudulent Rice Using Low-Cost Digital Sensing Devices and Machine Learning
Rice fraud is one of the common threats to the rice industry. Conventional methods to detect rice adulteration are costly, time-consuming, and tedious. This study proposes the quantitative prediction of rice adulteration levels measured through the packaging using a handheld near-infrared (NIR) spec...
Autores principales: | Aznan, Aimi, Gonzalez Viejo, Claudia, Pang, Alexis, Fuentes, Sigfredo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697730/ https://www.ncbi.nlm.nih.gov/pubmed/36433249 http://dx.doi.org/10.3390/s22228655 |
Ejemplares similares
-
Rapid Assessment of Rice Quality Traits Using Low-Cost Digital Technologies
por: Aznan, Aimi, et al.
Publicado: (2022) -
Computer Vision and Machine Learning Analysis of Commercial Rice Grains: A Potential Digital Approach for Consumer Perception Studies
por: Aznan, Aimi, et al.
Publicado: (2021) -
Digital Assessment and Classification of Wine Faults Using a Low-Cost Electronic Nose, Near-Infrared Spectroscopy and Machine Learning Modelling
por: Gonzalez Viejo, Claudia, et al.
Publicado: (2022) -
Assessment of Volatile Aromatic Compounds in Smoke Tainted Cabernet Sauvignon Wines Using a Low-Cost E-Nose and Machine Learning Modelling
por: Summerson, Vasiliki, et al.
Publicado: (2021) -
Integrating a Low-Cost Electronic Nose and Machine Learning Modelling to Assess Coffee Aroma Profile and Intensity
por: Gonzalez Viejo, Claudia, et al.
Publicado: (2021)