Cargando…
Pt-N Co-Modified TiO(2) Nanotube Electrode Photoelectrocatalytic Degradation of Oxytetracycline in Simulated Wastewater
Using photodeposition and plasma, Pt-N co-modified TiO(2) nanotube electrodes were created. Several techniques, such as SEM, XRD, UV-VIS-DRS, XPS, and PL, were used to analyze the electrode shape, crystalline structure, light absorption range, elemental composition, and photogenerated carrier recomb...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697761/ https://www.ncbi.nlm.nih.gov/pubmed/36355927 http://dx.doi.org/10.3390/toxics10110635 |
Sumario: | Using photodeposition and plasma, Pt-N co-modified TiO(2) nanotube electrodes were created. Several techniques, such as SEM, XRD, UV-VIS-DRS, XPS, and PL, were used to analyze the electrode shape, crystalline structure, light absorption range, elemental composition, and photogenerated carrier recombination efficiency. Using the electrochemical workstation, EIS and I-t were utilized to examine the electrochemical characteristics. The results indicated that the diameter of the TiO(2) nanotube tubes was around 90 nm, and that the photodeposition duration affected the amount of Pt particles deposited. The deposited Pt particles efficiently reduced the photogenerated carrier complexation rate of the N-TiO(2) nanotube electrode, contributing to the separation of electron-hole pairs and light utilization. Electrochemical studies indicated that Pt-N co-modified TiO(2) increased the electrode’s oxidation and electrical conductivity, as well as its photoelectrocatalytic capacity. Oxytetracycline degradation in simulated wastewater by a Pt-N co-modified TiO(2) nanotube electrode revealed the exceptional PEC activity, and the oxytetracycline degradation processes followed primary kinetics. •O(2)(−) and •OH played a significant role in the photoelectrocatalytic degradation of oxytetracycline, resulting in a novel method for oxytetracycline degradation. |
---|