Cargando…

Computer-Aided Diagnosis of Pulmonary Nodules in Rheumatoid Arthritis

(1) Background: Rheumatoid arthritis (RA) is considered a systemic inflammatory pathology characterized by symmetric polyarthritis associated with extra-articular manifestations, such as lung disease. The purpose of the present study is to use CAD in the detection of rheumatoid pulmonary nodules. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Mușetescu, Anca Emanuela, Gherghina, Florin Liviu, Florescu, Lucian-Mihai, Streba, Liliana, Ciurea, Paulina Lucia, Florescu, Alesandra, Gheonea, Ioana Andreea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697803/
https://www.ncbi.nlm.nih.gov/pubmed/36431070
http://dx.doi.org/10.3390/life12111935
_version_ 1784838658805727232
author Mușetescu, Anca Emanuela
Gherghina, Florin Liviu
Florescu, Lucian-Mihai
Streba, Liliana
Ciurea, Paulina Lucia
Florescu, Alesandra
Gheonea, Ioana Andreea
author_facet Mușetescu, Anca Emanuela
Gherghina, Florin Liviu
Florescu, Lucian-Mihai
Streba, Liliana
Ciurea, Paulina Lucia
Florescu, Alesandra
Gheonea, Ioana Andreea
author_sort Mușetescu, Anca Emanuela
collection PubMed
description (1) Background: Rheumatoid arthritis (RA) is considered a systemic inflammatory pathology characterized by symmetric polyarthritis associated with extra-articular manifestations, such as lung disease. The purpose of the present study is to use CAD in the detection of rheumatoid pulmonary nodules. In addition, we aim to identify the characteristics and associations between clinical, laboratory and imaging data in patients with rheumatoid arthritis and lung nodules. (2) Methods: The study included a number of 42 patients diagnosed with rheumatoid arthritis according to the 2010 American College of Rheumatology (ACR)/European League Against Rheumatism (EULAR) criteria, examined from January 2017 to November 2022 in the Departments of Rheumatology and Radiology and Medical Imaging of the University of Medicine and Pharmacy of Craiova. Medical records were reviewed. A retrospective blinded review of CT for biopsy-proven pulmonary nodules in RA using Veolity LungCAD software was performed (MeVis Medical Solutions AG, Bremen, Germany). Imaging was also reviewed by a senior radiologist. (3) Results: The interobserver agreement proved to be moderate (κ = 0.478) for the overall examined cases. CAD interpretation resulted in false positive results in the case of 12 lung nodules, whereas false negative results were reported in the case of 8 lung nodules. The mean time it took for the detection of lung nodules using CAD was 4.2 min per patient, whereas the detection of lung nodules by the radiologist was 8.1 min per patient. This resulted in a faster interpretation of lung CT scans, almost reducing the detection time by half (p < 0.001). (4) Conclusions: The CAD software is useful in identifying lung nodules, in shortening the interpretation time of the CT examination and also in aiding the radiologist in better assessing all the pulmonary lung nodules. However, the CAD software cannot replace the human eye yet due to the relative high rate of false positive and false negative results.
format Online
Article
Text
id pubmed-9697803
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96978032022-11-26 Computer-Aided Diagnosis of Pulmonary Nodules in Rheumatoid Arthritis Mușetescu, Anca Emanuela Gherghina, Florin Liviu Florescu, Lucian-Mihai Streba, Liliana Ciurea, Paulina Lucia Florescu, Alesandra Gheonea, Ioana Andreea Life (Basel) Article (1) Background: Rheumatoid arthritis (RA) is considered a systemic inflammatory pathology characterized by symmetric polyarthritis associated with extra-articular manifestations, such as lung disease. The purpose of the present study is to use CAD in the detection of rheumatoid pulmonary nodules. In addition, we aim to identify the characteristics and associations between clinical, laboratory and imaging data in patients with rheumatoid arthritis and lung nodules. (2) Methods: The study included a number of 42 patients diagnosed with rheumatoid arthritis according to the 2010 American College of Rheumatology (ACR)/European League Against Rheumatism (EULAR) criteria, examined from January 2017 to November 2022 in the Departments of Rheumatology and Radiology and Medical Imaging of the University of Medicine and Pharmacy of Craiova. Medical records were reviewed. A retrospective blinded review of CT for biopsy-proven pulmonary nodules in RA using Veolity LungCAD software was performed (MeVis Medical Solutions AG, Bremen, Germany). Imaging was also reviewed by a senior radiologist. (3) Results: The interobserver agreement proved to be moderate (κ = 0.478) for the overall examined cases. CAD interpretation resulted in false positive results in the case of 12 lung nodules, whereas false negative results were reported in the case of 8 lung nodules. The mean time it took for the detection of lung nodules using CAD was 4.2 min per patient, whereas the detection of lung nodules by the radiologist was 8.1 min per patient. This resulted in a faster interpretation of lung CT scans, almost reducing the detection time by half (p < 0.001). (4) Conclusions: The CAD software is useful in identifying lung nodules, in shortening the interpretation time of the CT examination and also in aiding the radiologist in better assessing all the pulmonary lung nodules. However, the CAD software cannot replace the human eye yet due to the relative high rate of false positive and false negative results. MDPI 2022-11-20 /pmc/articles/PMC9697803/ /pubmed/36431070 http://dx.doi.org/10.3390/life12111935 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Mușetescu, Anca Emanuela
Gherghina, Florin Liviu
Florescu, Lucian-Mihai
Streba, Liliana
Ciurea, Paulina Lucia
Florescu, Alesandra
Gheonea, Ioana Andreea
Computer-Aided Diagnosis of Pulmonary Nodules in Rheumatoid Arthritis
title Computer-Aided Diagnosis of Pulmonary Nodules in Rheumatoid Arthritis
title_full Computer-Aided Diagnosis of Pulmonary Nodules in Rheumatoid Arthritis
title_fullStr Computer-Aided Diagnosis of Pulmonary Nodules in Rheumatoid Arthritis
title_full_unstemmed Computer-Aided Diagnosis of Pulmonary Nodules in Rheumatoid Arthritis
title_short Computer-Aided Diagnosis of Pulmonary Nodules in Rheumatoid Arthritis
title_sort computer-aided diagnosis of pulmonary nodules in rheumatoid arthritis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697803/
https://www.ncbi.nlm.nih.gov/pubmed/36431070
http://dx.doi.org/10.3390/life12111935
work_keys_str_mv AT musetescuancaemanuela computeraideddiagnosisofpulmonarynodulesinrheumatoidarthritis
AT gherghinaflorinliviu computeraideddiagnosisofpulmonarynodulesinrheumatoidarthritis
AT floresculucianmihai computeraideddiagnosisofpulmonarynodulesinrheumatoidarthritis
AT strebaliliana computeraideddiagnosisofpulmonarynodulesinrheumatoidarthritis
AT ciureapaulinalucia computeraideddiagnosisofpulmonarynodulesinrheumatoidarthritis
AT florescualesandra computeraideddiagnosisofpulmonarynodulesinrheumatoidarthritis
AT gheoneaioanaandreea computeraideddiagnosisofpulmonarynodulesinrheumatoidarthritis