Cargando…
3D Visible Light-Based Indoor Positioning System Using Two-Stage Neural Network (TSNN) and Received Intensity Selective Enhancement (RISE) to Alleviate Light Non-Overlap Zones
The high precision three-dimensional (3D) visible light-based indoor positioning (VLIP) systems have gained much attention recently for people or robot navigation, access tracking, etc. In this work, we put forward and present the first demonstration, up to the authors’ knowledge, of a 3D VLIP syste...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697927/ https://www.ncbi.nlm.nih.gov/pubmed/36433411 http://dx.doi.org/10.3390/s22228817 |
_version_ | 1784838689800585216 |
---|---|
author | Hsu, Li-Sheng Chow, Chi-Wai Liu, Yang Yeh, Chien-Hung |
author_facet | Hsu, Li-Sheng Chow, Chi-Wai Liu, Yang Yeh, Chien-Hung |
author_sort | Hsu, Li-Sheng |
collection | PubMed |
description | The high precision three-dimensional (3D) visible light-based indoor positioning (VLIP) systems have gained much attention recently for people or robot navigation, access tracking, etc. In this work, we put forward and present the first demonstration, up to the authors’ knowledge, of a 3D VLIP system utilizing a two-stage neural network (TSNN) model. The positioning performance would degrade when the distance between the light emitting diode (LED) plane and the receiver (Rx) plane increases; however, because of the finite LED field-of-view (FOV), light non-overlap zones are created. These light non-overlap zones will produce high positioning error particularly for the 3D VLIP systems. Here, we also propose and demonstrate the Received-Intensity-Selective-Enhancement scheme, known as RISE, to alleviate the light non-overlap zones in the VLIP system. In a practical test-room with dimensions of 200 × 150 × 300 cm(3), the experimental results show that the mean errors in the training and testing data sets are reduced by 54.1% and 27.9% when using the TSNN model with RISE in the z-direction, and they are reduced by 39.1% and 37.8% in the xy-direction, respectively, when comparing that with using a one stage NN model only. At the cumulative distribution function (CDF) P90, the TSNN model with RISE can reduce the errors by 36.78% when compared with that in the one stage NN model. |
format | Online Article Text |
id | pubmed-9697927 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96979272022-11-26 3D Visible Light-Based Indoor Positioning System Using Two-Stage Neural Network (TSNN) and Received Intensity Selective Enhancement (RISE) to Alleviate Light Non-Overlap Zones Hsu, Li-Sheng Chow, Chi-Wai Liu, Yang Yeh, Chien-Hung Sensors (Basel) Article The high precision three-dimensional (3D) visible light-based indoor positioning (VLIP) systems have gained much attention recently for people or robot navigation, access tracking, etc. In this work, we put forward and present the first demonstration, up to the authors’ knowledge, of a 3D VLIP system utilizing a two-stage neural network (TSNN) model. The positioning performance would degrade when the distance between the light emitting diode (LED) plane and the receiver (Rx) plane increases; however, because of the finite LED field-of-view (FOV), light non-overlap zones are created. These light non-overlap zones will produce high positioning error particularly for the 3D VLIP systems. Here, we also propose and demonstrate the Received-Intensity-Selective-Enhancement scheme, known as RISE, to alleviate the light non-overlap zones in the VLIP system. In a practical test-room with dimensions of 200 × 150 × 300 cm(3), the experimental results show that the mean errors in the training and testing data sets are reduced by 54.1% and 27.9% when using the TSNN model with RISE in the z-direction, and they are reduced by 39.1% and 37.8% in the xy-direction, respectively, when comparing that with using a one stage NN model only. At the cumulative distribution function (CDF) P90, the TSNN model with RISE can reduce the errors by 36.78% when compared with that in the one stage NN model. MDPI 2022-11-15 /pmc/articles/PMC9697927/ /pubmed/36433411 http://dx.doi.org/10.3390/s22228817 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hsu, Li-Sheng Chow, Chi-Wai Liu, Yang Yeh, Chien-Hung 3D Visible Light-Based Indoor Positioning System Using Two-Stage Neural Network (TSNN) and Received Intensity Selective Enhancement (RISE) to Alleviate Light Non-Overlap Zones |
title | 3D Visible Light-Based Indoor Positioning System Using Two-Stage Neural Network (TSNN) and Received Intensity Selective Enhancement (RISE) to Alleviate Light Non-Overlap Zones |
title_full | 3D Visible Light-Based Indoor Positioning System Using Two-Stage Neural Network (TSNN) and Received Intensity Selective Enhancement (RISE) to Alleviate Light Non-Overlap Zones |
title_fullStr | 3D Visible Light-Based Indoor Positioning System Using Two-Stage Neural Network (TSNN) and Received Intensity Selective Enhancement (RISE) to Alleviate Light Non-Overlap Zones |
title_full_unstemmed | 3D Visible Light-Based Indoor Positioning System Using Two-Stage Neural Network (TSNN) and Received Intensity Selective Enhancement (RISE) to Alleviate Light Non-Overlap Zones |
title_short | 3D Visible Light-Based Indoor Positioning System Using Two-Stage Neural Network (TSNN) and Received Intensity Selective Enhancement (RISE) to Alleviate Light Non-Overlap Zones |
title_sort | 3d visible light-based indoor positioning system using two-stage neural network (tsnn) and received intensity selective enhancement (rise) to alleviate light non-overlap zones |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697927/ https://www.ncbi.nlm.nih.gov/pubmed/36433411 http://dx.doi.org/10.3390/s22228817 |
work_keys_str_mv | AT hsulisheng 3dvisiblelightbasedindoorpositioningsystemusingtwostageneuralnetworktsnnandreceivedintensityselectiveenhancementrisetoalleviatelightnonoverlapzones AT chowchiwai 3dvisiblelightbasedindoorpositioningsystemusingtwostageneuralnetworktsnnandreceivedintensityselectiveenhancementrisetoalleviatelightnonoverlapzones AT liuyang 3dvisiblelightbasedindoorpositioningsystemusingtwostageneuralnetworktsnnandreceivedintensityselectiveenhancementrisetoalleviatelightnonoverlapzones AT yehchienhung 3dvisiblelightbasedindoorpositioningsystemusingtwostageneuralnetworktsnnandreceivedintensityselectiveenhancementrisetoalleviatelightnonoverlapzones |