Cargando…

Methodology for Quantifying Volatile Compounds in a Liquid Mixture Using an Algorithm Combining B-Splines and Artificial Neural Networks to Process Responses of a Thermally Modulated Metal-Oxide Semiconductor Gas Sensor

Metal oxide semiconductor (MOS) gas sensors have many advantages, but the main obstacle to their widespread use is the cross-sensitivity observed when using this type of detector to analyze gas mixtures. Thermal modulation of the heater integrated with a MOS gas sensor reduced this problem and is a...

Descripción completa

Detalles Bibliográficos
Autor principal: Wawrzyniak, Jolanta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697949/
https://www.ncbi.nlm.nih.gov/pubmed/36433555
http://dx.doi.org/10.3390/s22228959
_version_ 1784838694798098432
author Wawrzyniak, Jolanta
author_facet Wawrzyniak, Jolanta
author_sort Wawrzyniak, Jolanta
collection PubMed
description Metal oxide semiconductor (MOS) gas sensors have many advantages, but the main obstacle to their widespread use is the cross-sensitivity observed when using this type of detector to analyze gas mixtures. Thermal modulation of the heater integrated with a MOS gas sensor reduced this problem and is a promising solution for applications requiring the selective detection of volatile compounds. Nevertheless, the interpretation of the sensor output signals, which take the form of complex, unique patterns, is difficult and requires advanced signal processing techniques. The study focuses on the development of a methodology to measure and process the output signal of a thermally modulated MOS gas sensor based on a B-spline curve and artificial neural networks (ANNs), which enable the quantitative analysis of volatile components (ethanol and acetone) coexisting in mixtures. B-spline approximation applied in the first stage allowed for the extraction of relevant information from the gas sensor output voltage and reduced the size of the measurement dataset while maintaining the most vital features contained in it. Then, the determined parameters of the curve were used as the input vector for the ANN model based on the multilayer perceptron structure. The results show great usefulness of the combination of B-spline and ANN modeling techniques to improve response selectivity of a thermally modulated MOS gas sensor.
format Online
Article
Text
id pubmed-9697949
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96979492022-11-26 Methodology for Quantifying Volatile Compounds in a Liquid Mixture Using an Algorithm Combining B-Splines and Artificial Neural Networks to Process Responses of a Thermally Modulated Metal-Oxide Semiconductor Gas Sensor Wawrzyniak, Jolanta Sensors (Basel) Article Metal oxide semiconductor (MOS) gas sensors have many advantages, but the main obstacle to their widespread use is the cross-sensitivity observed when using this type of detector to analyze gas mixtures. Thermal modulation of the heater integrated with a MOS gas sensor reduced this problem and is a promising solution for applications requiring the selective detection of volatile compounds. Nevertheless, the interpretation of the sensor output signals, which take the form of complex, unique patterns, is difficult and requires advanced signal processing techniques. The study focuses on the development of a methodology to measure and process the output signal of a thermally modulated MOS gas sensor based on a B-spline curve and artificial neural networks (ANNs), which enable the quantitative analysis of volatile components (ethanol and acetone) coexisting in mixtures. B-spline approximation applied in the first stage allowed for the extraction of relevant information from the gas sensor output voltage and reduced the size of the measurement dataset while maintaining the most vital features contained in it. Then, the determined parameters of the curve were used as the input vector for the ANN model based on the multilayer perceptron structure. The results show great usefulness of the combination of B-spline and ANN modeling techniques to improve response selectivity of a thermally modulated MOS gas sensor. MDPI 2022-11-19 /pmc/articles/PMC9697949/ /pubmed/36433555 http://dx.doi.org/10.3390/s22228959 Text en © 2022 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wawrzyniak, Jolanta
Methodology for Quantifying Volatile Compounds in a Liquid Mixture Using an Algorithm Combining B-Splines and Artificial Neural Networks to Process Responses of a Thermally Modulated Metal-Oxide Semiconductor Gas Sensor
title Methodology for Quantifying Volatile Compounds in a Liquid Mixture Using an Algorithm Combining B-Splines and Artificial Neural Networks to Process Responses of a Thermally Modulated Metal-Oxide Semiconductor Gas Sensor
title_full Methodology for Quantifying Volatile Compounds in a Liquid Mixture Using an Algorithm Combining B-Splines and Artificial Neural Networks to Process Responses of a Thermally Modulated Metal-Oxide Semiconductor Gas Sensor
title_fullStr Methodology for Quantifying Volatile Compounds in a Liquid Mixture Using an Algorithm Combining B-Splines and Artificial Neural Networks to Process Responses of a Thermally Modulated Metal-Oxide Semiconductor Gas Sensor
title_full_unstemmed Methodology for Quantifying Volatile Compounds in a Liquid Mixture Using an Algorithm Combining B-Splines and Artificial Neural Networks to Process Responses of a Thermally Modulated Metal-Oxide Semiconductor Gas Sensor
title_short Methodology for Quantifying Volatile Compounds in a Liquid Mixture Using an Algorithm Combining B-Splines and Artificial Neural Networks to Process Responses of a Thermally Modulated Metal-Oxide Semiconductor Gas Sensor
title_sort methodology for quantifying volatile compounds in a liquid mixture using an algorithm combining b-splines and artificial neural networks to process responses of a thermally modulated metal-oxide semiconductor gas sensor
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697949/
https://www.ncbi.nlm.nih.gov/pubmed/36433555
http://dx.doi.org/10.3390/s22228959
work_keys_str_mv AT wawrzyniakjolanta methodologyforquantifyingvolatilecompoundsinaliquidmixtureusinganalgorithmcombiningbsplinesandartificialneuralnetworkstoprocessresponsesofathermallymodulatedmetaloxidesemiconductorgassensor