Cargando…
A Portable, Negative-Pressure Actuated, Dynamically Tunable Microfluidic Droplet Generator
Droplet microfluidics utilize a monodisperse water-in-oil emulsion, with an expanding toolbox offering a wide variety of operations on a range of droplet sizes at high throughput. However, translation of these capabilities into applications for non-expert laboratories to fully harness the inherent p...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697964/ https://www.ncbi.nlm.nih.gov/pubmed/36363843 http://dx.doi.org/10.3390/mi13111823 |
_version_ | 1784838698088529920 |
---|---|
author | Trossbach, Martin de Lucas Sanz, Marta Seashore-Ludlow, Brinton Joensson, Haakan N. |
author_facet | Trossbach, Martin de Lucas Sanz, Marta Seashore-Ludlow, Brinton Joensson, Haakan N. |
author_sort | Trossbach, Martin |
collection | PubMed |
description | Droplet microfluidics utilize a monodisperse water-in-oil emulsion, with an expanding toolbox offering a wide variety of operations on a range of droplet sizes at high throughput. However, translation of these capabilities into applications for non-expert laboratories to fully harness the inherent potential of microscale manipulations is woefully trailing behind. One major obstacle is that droplet microfluidic setups often rely on custom fabricated devices, costly liquid actuators, and are not easily set up and operated by non-specialists. This impedes wider adoption of droplet technologies in, e.g., the life sciences. Here, we demonstrate an easy-to-use minimal droplet production setup with a small footprint, built exclusively from inexpensive commercially sourced parts, powered and controlled by a laptop. We characterize the components of the system and demonstrate production of droplets ranging in volume from 3 to 21 nL in a single microfluidic device. Furthermore, we describe the dynamic tuning of droplet composition. Finally, we demonstrate the production of droplet-templated cell spheroids from primary cells, where the mobility and simplicity of the setup enables its use within a biosafety cabinet. Taken together, we believe this minimal droplet setup is ideal to drive broad adoption of droplet microfluidics technology. |
format | Online Article Text |
id | pubmed-9697964 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96979642022-11-26 A Portable, Negative-Pressure Actuated, Dynamically Tunable Microfluidic Droplet Generator Trossbach, Martin de Lucas Sanz, Marta Seashore-Ludlow, Brinton Joensson, Haakan N. Micromachines (Basel) Article Droplet microfluidics utilize a monodisperse water-in-oil emulsion, with an expanding toolbox offering a wide variety of operations on a range of droplet sizes at high throughput. However, translation of these capabilities into applications for non-expert laboratories to fully harness the inherent potential of microscale manipulations is woefully trailing behind. One major obstacle is that droplet microfluidic setups often rely on custom fabricated devices, costly liquid actuators, and are not easily set up and operated by non-specialists. This impedes wider adoption of droplet technologies in, e.g., the life sciences. Here, we demonstrate an easy-to-use minimal droplet production setup with a small footprint, built exclusively from inexpensive commercially sourced parts, powered and controlled by a laptop. We characterize the components of the system and demonstrate production of droplets ranging in volume from 3 to 21 nL in a single microfluidic device. Furthermore, we describe the dynamic tuning of droplet composition. Finally, we demonstrate the production of droplet-templated cell spheroids from primary cells, where the mobility and simplicity of the setup enables its use within a biosafety cabinet. Taken together, we believe this minimal droplet setup is ideal to drive broad adoption of droplet microfluidics technology. MDPI 2022-10-25 /pmc/articles/PMC9697964/ /pubmed/36363843 http://dx.doi.org/10.3390/mi13111823 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Trossbach, Martin de Lucas Sanz, Marta Seashore-Ludlow, Brinton Joensson, Haakan N. A Portable, Negative-Pressure Actuated, Dynamically Tunable Microfluidic Droplet Generator |
title | A Portable, Negative-Pressure Actuated, Dynamically Tunable Microfluidic Droplet Generator |
title_full | A Portable, Negative-Pressure Actuated, Dynamically Tunable Microfluidic Droplet Generator |
title_fullStr | A Portable, Negative-Pressure Actuated, Dynamically Tunable Microfluidic Droplet Generator |
title_full_unstemmed | A Portable, Negative-Pressure Actuated, Dynamically Tunable Microfluidic Droplet Generator |
title_short | A Portable, Negative-Pressure Actuated, Dynamically Tunable Microfluidic Droplet Generator |
title_sort | portable, negative-pressure actuated, dynamically tunable microfluidic droplet generator |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697964/ https://www.ncbi.nlm.nih.gov/pubmed/36363843 http://dx.doi.org/10.3390/mi13111823 |
work_keys_str_mv | AT trossbachmartin aportablenegativepressureactuateddynamicallytunablemicrofluidicdropletgenerator AT delucassanzmarta aportablenegativepressureactuateddynamicallytunablemicrofluidicdropletgenerator AT seashoreludlowbrinton aportablenegativepressureactuateddynamicallytunablemicrofluidicdropletgenerator AT joenssonhaakann aportablenegativepressureactuateddynamicallytunablemicrofluidicdropletgenerator AT trossbachmartin portablenegativepressureactuateddynamicallytunablemicrofluidicdropletgenerator AT delucassanzmarta portablenegativepressureactuateddynamicallytunablemicrofluidicdropletgenerator AT seashoreludlowbrinton portablenegativepressureactuateddynamicallytunablemicrofluidicdropletgenerator AT joenssonhaakann portablenegativepressureactuateddynamicallytunablemicrofluidicdropletgenerator |