Cargando…

Range Spectral Filtering in SAR Interferometry: Methods and Limitations

A geometrical decorrelation constitutes one of the sources of noise present in Synthetic Aperture Radar (SAR) interferograms. It comes from the different incidence angles of the two images used to form the interferograms, which cause a spectral (frequency) shift between them. A geometrical decorrela...

Descripción completa

Detalles Bibliográficos
Autores principales: Mestre-Quereda, Alejandro, Lopez-Sanchez, Juan M., Mallorqui, Jordi J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697970/
https://www.ncbi.nlm.nih.gov/pubmed/36433293
http://dx.doi.org/10.3390/s22228696
_version_ 1784838699643568128
author Mestre-Quereda, Alejandro
Lopez-Sanchez, Juan M.
Mallorqui, Jordi J.
author_facet Mestre-Quereda, Alejandro
Lopez-Sanchez, Juan M.
Mallorqui, Jordi J.
author_sort Mestre-Quereda, Alejandro
collection PubMed
description A geometrical decorrelation constitutes one of the sources of noise present in Synthetic Aperture Radar (SAR) interferograms. It comes from the different incidence angles of the two images used to form the interferograms, which cause a spectral (frequency) shift between them. A geometrical decorrelation must be compensated by a specific filtering technique known as range filtering, the goal of which is to estimate this spectral displacement and retain only the common parts of the images’ spectra, reducing the noise and improving the quality of the interferograms. Multiple range filters have been proposed in the literature. The most widely used methods are an adaptive filter approach, which estimates the spectral shift directly from the data; a method based on orbital information, which assumes a constant-slope (or flat) terrain; and slope-adaptive algorithms, which consider both orbital information and auxiliary topographic data. Their advantages and limitations are analyzed in this manuscript and, additionally, a new, more refined approach is proposed. Its goal is to enhance the filtering process by automatically adapting the filter to all types of surface variations using a multi-scale strategy. A pair of RADARSAT-2 images that mapped the mountainous area around the Etna volcano (Italy) are used for the study. The results show that filtering accuracy is improved with the new method including the steepest areas and vegetation-covered regions in which the performance of the original methods is limited.
format Online
Article
Text
id pubmed-9697970
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96979702022-11-26 Range Spectral Filtering in SAR Interferometry: Methods and Limitations Mestre-Quereda, Alejandro Lopez-Sanchez, Juan M. Mallorqui, Jordi J. Sensors (Basel) Article A geometrical decorrelation constitutes one of the sources of noise present in Synthetic Aperture Radar (SAR) interferograms. It comes from the different incidence angles of the two images used to form the interferograms, which cause a spectral (frequency) shift between them. A geometrical decorrelation must be compensated by a specific filtering technique known as range filtering, the goal of which is to estimate this spectral displacement and retain only the common parts of the images’ spectra, reducing the noise and improving the quality of the interferograms. Multiple range filters have been proposed in the literature. The most widely used methods are an adaptive filter approach, which estimates the spectral shift directly from the data; a method based on orbital information, which assumes a constant-slope (or flat) terrain; and slope-adaptive algorithms, which consider both orbital information and auxiliary topographic data. Their advantages and limitations are analyzed in this manuscript and, additionally, a new, more refined approach is proposed. Its goal is to enhance the filtering process by automatically adapting the filter to all types of surface variations using a multi-scale strategy. A pair of RADARSAT-2 images that mapped the mountainous area around the Etna volcano (Italy) are used for the study. The results show that filtering accuracy is improved with the new method including the steepest areas and vegetation-covered regions in which the performance of the original methods is limited. MDPI 2022-11-10 /pmc/articles/PMC9697970/ /pubmed/36433293 http://dx.doi.org/10.3390/s22228696 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Mestre-Quereda, Alejandro
Lopez-Sanchez, Juan M.
Mallorqui, Jordi J.
Range Spectral Filtering in SAR Interferometry: Methods and Limitations
title Range Spectral Filtering in SAR Interferometry: Methods and Limitations
title_full Range Spectral Filtering in SAR Interferometry: Methods and Limitations
title_fullStr Range Spectral Filtering in SAR Interferometry: Methods and Limitations
title_full_unstemmed Range Spectral Filtering in SAR Interferometry: Methods and Limitations
title_short Range Spectral Filtering in SAR Interferometry: Methods and Limitations
title_sort range spectral filtering in sar interferometry: methods and limitations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697970/
https://www.ncbi.nlm.nih.gov/pubmed/36433293
http://dx.doi.org/10.3390/s22228696
work_keys_str_mv AT mestrequeredaalejandro rangespectralfilteringinsarinterferometrymethodsandlimitations
AT lopezsanchezjuanm rangespectralfilteringinsarinterferometrymethodsandlimitations
AT mallorquijordij rangespectralfilteringinsarinterferometrymethodsandlimitations