Cargando…
Numerical Simulations of the Effect of the Asymmetrical Bending of the Hindwings of a Hovering C. buqueti Bamboo Weevil with Respect to the Aerodynamic Characteristics
The airfoil structure and folding pattern of the hindwings of a beetle provide new transformation paths for improvements in the aerodynamic performance and structural optimization of flapping-wing flying robots. However, the explanation for the aerodynamic mechanism of the asymmetrical bending of a...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698059/ https://www.ncbi.nlm.nih.gov/pubmed/36422423 http://dx.doi.org/10.3390/mi13111995 |
Sumario: | The airfoil structure and folding pattern of the hindwings of a beetle provide new transformation paths for improvements in the aerodynamic performance and structural optimization of flapping-wing flying robots. However, the explanation for the aerodynamic mechanism of the asymmetrical bending of a real beetle’s hindwings under aerodynamic loads originating from the ventral and dorsal sides is unclear. To address this gap in our understanding, a computational investigation into the aerodynamic characteristics of the flight ability of C. buqueti and the large folding ratio of their hindwings when hovering is carried out in this article. A three-dimensional (3D) pressure-based SST k-ω turbulence model with a biomimetic structure was used for the detailed analysis, and a refined polyhedral mesh was used for the simulations. The results show that the fluid around the hindwings forms a vortex ring consisting of a leading-edge vortex (LEV), wing-tip vortex (TV) and trailing-edge vortex (TEV). Approximately 61% of the total lift is generated during the downstroke, which may be closely related to the asymmetric bending of the hindwings when they are subjected to pressure load. |
---|