Cargando…
Ganglioside GM3-Functionalized Reconstituted High-Density Lipoprotein (GM3-rHDL) as a Novel Nanocarrier Enhances Antiatherosclerotic Efficacy of Statins in apoE(−/−) C57BL/6 Mice
Previously, we found that exogenous ganglioside GM3 had an antiatherosclerotic efficacy and that its antiatherosclerotic efficacy could be enhanced by reconstituted high-density lipoprotein (rHDL). In this study, we hypothesized that GM3-functionalized rHDL (i.e., GM3-rHDL) as a nanocarrier can prom...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698139/ https://www.ncbi.nlm.nih.gov/pubmed/36432725 http://dx.doi.org/10.3390/pharmaceutics14112534 |
Sumario: | Previously, we found that exogenous ganglioside GM3 had an antiatherosclerotic efficacy and that its antiatherosclerotic efficacy could be enhanced by reconstituted high-density lipoprotein (rHDL). In this study, we hypothesized that GM3-functionalized rHDL (i.e., GM3-rHDL) as a nanocarrier can promote the efficacy of traditional antiatherosclerotic drugs (e.g., statins). To test this hypothesis, lovastatin (LT) was used as a representative of statins, and LT-loaded GM3-rHDL nanoparticle (LT-GM3-rHDL or LT@GM3-rHDL; a mean size of ~142 nm) and multiple controls (e.g., GM3-rHDL without LT, LT-loaded rHDL or LT-rHDL, and other nanoparticles) were prepared. By using two different microsphere-based methods, the presences of apolipoprotein A-I (apoA-I) and/or GM3 in nanoparticles and the apoA-I-mediated macrophage-targeting ability of apoA-I/rHDL-containing nanoparticles were verified in vitro. Moreover, LT-GM3-rHDL nanoparticle had a slowly sustained LT release in vitro and the strongest inhibitory effect on the foam cell formation of macrophages (a key event of atherogenesis). After single administration of rHDL-based nanoparticles, a higher LT concentration was detected shortly in the atherosclerotic plaques of apoE(−/−) mice than non-rHDL-based nanoparticles, suggesting the in vivo plaque-targeting ability of apoA-I/rHDL-containing nanoparticles. Finally, among all nanoparticles LT-GM3-rHDL induced the largest decreases in the contents of blood lipids and in the areas of atherosclerotic plaques at various aortic locations in apoE(−/−) mice fed a high-fat diet for 12 weeks, supporting that LT-GM3-rHDL has the best in vivo antiatherosclerotic efficacy among the tested nanoparticles. Our data imply that GM3-functionalized rHDL (i.e., GM3-rHDL) can be utilized as a novel nanocarrier to enhance the efficacy of traditional antiatherosclerotic drugs (e.g., statins). |
---|