Cargando…
SARS-CoV-2 Morphometry Analysis and Prediction of Real Virus Levels Based on Full Recurrent Neural Network Using TEM Images
The SARS-CoV-2 virus is responsible for the rapid global spread of the COVID-19 disease. As a result, it is critical to understand and collect primary data on the virus, infection epidemiology, and treatment. Despite the speed with which the virus was detected, studies of its cell biology and archit...
Autores principales: | Taha, Bakr Ahmed, Mashhadany, Yousif Al, Al-Jumaily, Abdulmajeed H. J., Zan, Mohd Saiful Dzulkefly Bin, Arsad, Norhana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698148/ https://www.ncbi.nlm.nih.gov/pubmed/36366485 http://dx.doi.org/10.3390/v14112386 |
Ejemplares similares
-
An Analysis Review of Detection Coronavirus Disease 2019 (COVID-19) Based on Biosensor Application
por: Taha, Bakr Ahmed, et al.
Publicado: (2020) -
Photonics enabled intelligence system to identify SARS-CoV 2 mutations
por: Taha, Bakr Ahmed, et al.
Publicado: (2022) -
Density estimation of SARS-CoV2 spike proteins using super pixels segmentation technique
por: Taha, Bakr Ahmed, et al.
Publicado: (2023) -
Detection of COVID-19 Virus on Surfaces Using Photonics: Challenges and Perspectives
por: Taha, Bakr Ahmed, et al.
Publicado: (2021) -
Human Body Performance with COVID-19 Affectation According to Virus Specification Based on Biosensor Techniques
por: Alathari, Mohammed Jawad Ahmed, et al.
Publicado: (2021)