Cargando…

One-Step Theory View on Photoelectron Diffraction: Application to Graphene

Diffraction of photoelectrons emitted from the core 1s and valence band of monolayer and bilayer graphene is studied within the one-step theory of photoemission. The energy-dependent angular distribution of the photoelectrons is compared to the simulated electron reflection pattern of a low-energy e...

Descripción completa

Detalles Bibliográficos
Autor principal: Krasovskii, Eugene
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698165/
https://www.ncbi.nlm.nih.gov/pubmed/36432325
http://dx.doi.org/10.3390/nano12224040
Descripción
Sumario:Diffraction of photoelectrons emitted from the core 1s and valence band of monolayer and bilayer graphene is studied within the one-step theory of photoemission. The energy-dependent angular distribution of the photoelectrons is compared to the simulated electron reflection pattern of a low-energy electron diffraction experiment in the kinetic energy range up to about 55 eV, and the implications for the structure determination are discussed. Constant energy contours due to scattering resonances are well visible in photoelectron diffraction, and their experimental shape is well reproduced. The example of the bilayer graphene is used to reveal the effect of the scattering by the subsurface layer. The photoemission and LEED patterns are shown to contain essentially the same information about the long-range order. The diffraction patterns of C [Formula: see text] and valence band photoelectrons bear similar anisotropy and are equally suitable for diffraction analysis.