Cargando…
Fast Fitting of the Dynamic Memdiode Model to the Conduction Characteristics of RRAM Devices Using Convolutional Neural Networks
In this paper, the use of Artificial Neural Networks (ANNs) in the form of Convolutional Neural Networks (AlexNET) for the fast and energy-efficient fitting of the Dynamic Memdiode Model (DMM) to the conduction characteristics of bipolar-type resistive switching (RS) devices is investigated. Despite...
Autores principales: | Aguirre, Fernando Leonel, Piros, Eszter, Kaiser, Nico, Vogel, Tobias, Petzold, Stephan, Gehrunger, Jonas, Oster, Timo, Hochberger, Christian, Suñé, Jordi, Alff, Lambert, Miranda, Enrique |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698277/ https://www.ncbi.nlm.nih.gov/pubmed/36422434 http://dx.doi.org/10.3390/mi13112002 |
Ejemplares similares
-
SPICE Implementation of the Dynamic Memdiode Model for Bipolar Resistive Switching Devices
por: Aguirre, Fernando Leonel, et al.
Publicado: (2022) -
Controlling the Formation of Conductive Pathways in Memristive Devices
por: Winkler, Robert, et al.
Publicado: (2022) -
Controlling the Formation of Conductive Pathways in Memristive Devices (Adv. Sci. 33/2022)
por: Winkler, Robert, et al.
Publicado: (2022) -
Crystal and Electronic
Structure of Oxygen Vacancy
Stabilized Rhombohedral Hafnium Oxide
por: Kaiser, Nico, et al.
Publicado: (2023) -
Scalable Memdiodes Exhibiting Rectification and Hysteresis for Neuromorphic Computing
por: Shank, Joshua C., et al.
Publicado: (2018)