Cargando…
One-Class Convolutional Neural Networks for Water-Level Anomaly Detection
Companies that own water systems to provide water storage and distribution services always strive to enhance and efficiently distribute water to different places for various purposes. However, these water systems are likely to face problems ranging from leakage to destruction of infrastructures, lea...
Autores principales: | Nicholaus, Isack Thomas, Lee, Jun-Seoung, Kang, Dae-Ki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698379/ https://www.ncbi.nlm.nih.gov/pubmed/36433361 http://dx.doi.org/10.3390/s22228764 |
Ejemplares similares
-
Anomaly Detection of Water Level Using Deep Autoencoder
por: Nicholaus, Isack Thomas, et al.
Publicado: (2021) -
A Convolutional Neural Network for Improved Anomaly-Based Network Intrusion Detection
por: Al-Turaiki, Isra, et al.
Publicado: (2021) -
Detection of anomalies in cycling behavior with convolutional neural network and deep learning
por: Yaqoob, Shumayla, et al.
Publicado: (2023) -
Detection of Appearance and Behavior Anomalies in Stationary Camera Videos Using Convolutional Neural Networks
por: Chen, H., et al.
Publicado: (2022) -
Data Anomaly Detection for Structural Health Monitoring Based on a Convolutional Neural Network
por: Kim, Soon-Young, et al.
Publicado: (2023)