Cargando…
IMU-Based Classification of Locomotion Modes, Transitions, and Gait Phases with Convolutional Recurrent Neural Networks
This paper focuses on the classification of seven locomotion modes (sitting, standing, level ground walking, ramp ascent and descent, stair ascent and descent), the transitions among these modes, and the gait phases within each mode, by only using data in the frequency domain from one or two inertia...
Autores principales: | Marcos Mazon, Daniel, Groefsema, Marc, Schomaker, Lambert R. B., Carloni, Raffaella |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698430/ https://www.ncbi.nlm.nih.gov/pubmed/36433469 http://dx.doi.org/10.3390/s22228871 |
Ejemplares similares
-
IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion
por: Dehzangi, Omid, et al.
Publicado: (2017) -
Locomotion Mode Recognition Algorithm Based on Gaussian Mixture Model Using IMU Sensors
por: Shin, Dongbin, et al.
Publicado: (2021) -
Understanding LSTM Network Behaviour of IMU-Based Locomotion Mode Recognition for Applications in Prostheses and Wearables
por: Sherratt, Freddie, et al.
Publicado: (2021) -
Bifurcation control of gait transition in insect locomotion
por: Barnett, William, et al.
Publicado: (2014) -
Automatic ML-based vestibular gait classification: examining the effects of IMU placement and gait task selection
por: Jabri, Safa, et al.
Publicado: (2022)