Cargando…

Comparative In Vitro Biocompatibility Study of the Two Orthodontic Bonding Materials of Different Types

In the present study, the in vitro biocompatibility and cell response to two commonly used orthodontic bonding materials of different types, one self-curing and one light-curing, were examined and compared in indirect and direct cell culture systems. The study was conducted on fibroblasts and macrop...

Descripción completa

Detalles Bibliográficos
Autores principales: Janošević, Predrag, Stojanović, Sanja, Stojanović, Ivana, Janošević, Mirjana, Najman, Stevo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698495/
https://www.ncbi.nlm.nih.gov/pubmed/36433124
http://dx.doi.org/10.3390/polym14224998
Descripción
Sumario:In the present study, the in vitro biocompatibility and cell response to two commonly used orthodontic bonding materials of different types, one self-curing and one light-curing, were examined and compared in indirect and direct cell culture systems. The study was conducted on fibroblasts and macrophages as in vitro models to study the biocompatibility of dental materials. Differences were found between the light- and self-curing material in cytotoxicity and effects on fibroblasts’ proliferation in indirect cell culture systems as well as in macrophages response in vitro in both direct and indirect cell culture systems. Based on the obtained results, we can conclude that the self-curing material is generally more cytotoxic for fibroblasts compared to the light-curing, while macrophages’ response to these materials was dependent on the macrophages’ state and differed between the examined materials. This indicates that more attention should be paid when choosing and applying these materials in practice due to their toxicity to cells. Prior to their use, all aspects should be considered regarding the patient’s conditions, associated problems, microenvironment in the oral cavity, etc. Further studies on in vivo models should be conducted to fully understand the potential long-term effects of the use of mentioned materials in orthodontics.