Cargando…

A Review of Synthetic Image Data and Its Use in Computer Vision

Development of computer vision algorithms using convolutional neural networks and deep learning has necessitated ever greater amounts of annotated and labelled data to produce high performance models. Large, public data sets have been instrumental in pushing forward computer vision by providing the...

Descripción completa

Detalles Bibliográficos
Autores principales: Man, Keith, Chahl, Javaan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698631/
https://www.ncbi.nlm.nih.gov/pubmed/36422059
http://dx.doi.org/10.3390/jimaging8110310
Descripción
Sumario:Development of computer vision algorithms using convolutional neural networks and deep learning has necessitated ever greater amounts of annotated and labelled data to produce high performance models. Large, public data sets have been instrumental in pushing forward computer vision by providing the data necessary for training. However, many computer vision applications cannot rely on general image data provided in the available public datasets to train models, instead requiring labelled image data that is not readily available in the public domain on a large scale. At the same time, acquiring such data from the real world can be difficult, costly to obtain, and manual labour intensive to label in large quantities. Because of this, synthetic image data has been pushed to the forefront as a potentially faster and cheaper alternative to collecting and annotating real data. This review provides general overview of types of synthetic image data, as categorised by synthesised output, common methods of synthesising different types of image data, existing applications and logical extensions, performance of synthetic image data in different applications and the associated difficulties in assessing data performance, and areas for further research.