Cargando…
A Review of Synthetic Image Data and Its Use in Computer Vision
Development of computer vision algorithms using convolutional neural networks and deep learning has necessitated ever greater amounts of annotated and labelled data to produce high performance models. Large, public data sets have been instrumental in pushing forward computer vision by providing the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698631/ https://www.ncbi.nlm.nih.gov/pubmed/36422059 http://dx.doi.org/10.3390/jimaging8110310 |
_version_ | 1784838869351399424 |
---|---|
author | Man, Keith Chahl, Javaan |
author_facet | Man, Keith Chahl, Javaan |
author_sort | Man, Keith |
collection | PubMed |
description | Development of computer vision algorithms using convolutional neural networks and deep learning has necessitated ever greater amounts of annotated and labelled data to produce high performance models. Large, public data sets have been instrumental in pushing forward computer vision by providing the data necessary for training. However, many computer vision applications cannot rely on general image data provided in the available public datasets to train models, instead requiring labelled image data that is not readily available in the public domain on a large scale. At the same time, acquiring such data from the real world can be difficult, costly to obtain, and manual labour intensive to label in large quantities. Because of this, synthetic image data has been pushed to the forefront as a potentially faster and cheaper alternative to collecting and annotating real data. This review provides general overview of types of synthetic image data, as categorised by synthesised output, common methods of synthesising different types of image data, existing applications and logical extensions, performance of synthetic image data in different applications and the associated difficulties in assessing data performance, and areas for further research. |
format | Online Article Text |
id | pubmed-9698631 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96986312022-11-26 A Review of Synthetic Image Data and Its Use in Computer Vision Man, Keith Chahl, Javaan J Imaging Review Development of computer vision algorithms using convolutional neural networks and deep learning has necessitated ever greater amounts of annotated and labelled data to produce high performance models. Large, public data sets have been instrumental in pushing forward computer vision by providing the data necessary for training. However, many computer vision applications cannot rely on general image data provided in the available public datasets to train models, instead requiring labelled image data that is not readily available in the public domain on a large scale. At the same time, acquiring such data from the real world can be difficult, costly to obtain, and manual labour intensive to label in large quantities. Because of this, synthetic image data has been pushed to the forefront as a potentially faster and cheaper alternative to collecting and annotating real data. This review provides general overview of types of synthetic image data, as categorised by synthesised output, common methods of synthesising different types of image data, existing applications and logical extensions, performance of synthetic image data in different applications and the associated difficulties in assessing data performance, and areas for further research. MDPI 2022-11-21 /pmc/articles/PMC9698631/ /pubmed/36422059 http://dx.doi.org/10.3390/jimaging8110310 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Man, Keith Chahl, Javaan A Review of Synthetic Image Data and Its Use in Computer Vision |
title | A Review of Synthetic Image Data and Its Use in Computer Vision |
title_full | A Review of Synthetic Image Data and Its Use in Computer Vision |
title_fullStr | A Review of Synthetic Image Data and Its Use in Computer Vision |
title_full_unstemmed | A Review of Synthetic Image Data and Its Use in Computer Vision |
title_short | A Review of Synthetic Image Data and Its Use in Computer Vision |
title_sort | review of synthetic image data and its use in computer vision |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698631/ https://www.ncbi.nlm.nih.gov/pubmed/36422059 http://dx.doi.org/10.3390/jimaging8110310 |
work_keys_str_mv | AT mankeith areviewofsyntheticimagedataanditsuseincomputervision AT chahljavaan areviewofsyntheticimagedataanditsuseincomputervision AT mankeith reviewofsyntheticimagedataanditsuseincomputervision AT chahljavaan reviewofsyntheticimagedataanditsuseincomputervision |