Cargando…
Immunostimulatory Activity of Lactic Acid Bacteria Cell-Free Supernatants through the Activation of NF-κB and MAPK Signaling Pathways in RAW 264.7 Cells
Lactic acid bacteria (LAB) can improve host health and has strong potential for use as a health functional food. Specific strains of LAB have been reported to exert immunostimulatory effects. The primary goal of this study was to evaluate the immunostimulatory activities of novel LAB strains isolate...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698684/ https://www.ncbi.nlm.nih.gov/pubmed/36422317 http://dx.doi.org/10.3390/microorganisms10112247 |
Sumario: | Lactic acid bacteria (LAB) can improve host health and has strong potential for use as a health functional food. Specific strains of LAB have been reported to exert immunostimulatory effects. The primary goal of this study was to evaluate the immunostimulatory activities of novel LAB strains isolated from humans and foods and to investigate the probiotic properties of these strains. Cell-free supernatants (CFS) obtained from selected LAB strains significantly increased phagocytosis and level of nitric oxide (NO) and pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 in RAW264.7 macrophage cells. The protein expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, which are immunomodulators, was also upregulated by CFS treatment. CFS markedly induced the phosphorylation of nuclear factor-κB (NF-κB) and MAPKs (ERK, JNK, and p38). In addition, the safety of the LAB strains used in this study was demonstrated by hemolysis and antibiotic resistance tests. Their stability was confirmed under simulated gastrointestinal conditions. Taken together, these results indicate that the LAB strains selected in this study could be useful as probiotic candidates with immune-stimulating activity. |
---|