Cargando…

Therapeutic Efficacy of Natural Product ‘C-Phycocyanin’ in Alleviating Streptozotocin-Induced Diabetes via the Inhibition of Glycation Reaction in Rats

Diabetes is a long-term metabolic disorder characterized by persistently elevated blood sugar levels. Chronic hyperglycemia enhances glucose–protein interactions, leading to the formation of advanced glycation end products (AGEs), which form irreversible cross-links with a wide variety of macromolec...

Descripción completa

Detalles Bibliográficos
Autores principales: Husain, Arbab, Alouffi, Sultan, Khanam, Afreen, Akasha, Rihab, Farooqui, Alvina, Ahmad, Saheem
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698742/
https://www.ncbi.nlm.nih.gov/pubmed/36430714
http://dx.doi.org/10.3390/ijms232214235
Descripción
Sumario:Diabetes is a long-term metabolic disorder characterized by persistently elevated blood sugar levels. Chronic hyperglycemia enhances glucose–protein interactions, leading to the formation of advanced glycation end products (AGEs), which form irreversible cross-links with a wide variety of macromolecules, and accumulate rapidly in the body tissues. Thus, the objective of this study was to assess the therapeutic properties of C-phycocyanin (C-PC) obtained from Plectonema species against oxidative stress, glycation, and type 2 diabetes mellitus (T2DM) in a streptozotocin (STZ)-induced diabetic Wistar rat. Forty-five days of C-PC administration decreased levels of triglycerides (TGs), blood glucose, glycosylated hemoglobin, (HbA1c), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), liver and kidney function indices, and raised body weight in diabetic rats. C-PC suppressed biochemical glycation markers, as well as serum carboxymethyllysine (CML) and fluorescent AGEs. Additionally, C-PC maintained the redox state by lowering lipid peroxidation and protein-bound carbonyl content (CC), enhancing the activity of high-density lipoprotein cholesterol (HDL-C) and renal antioxidant enzymes, and preserving retinal and renal histopathological characteristics. Thus, we infer that C-PC possesses antidiabetic and antiglycation effects in diabetic rats. C-PC may also act as an antidiabetic and antiglycation agent in vivo that may reduce the risk of secondary diabetic complications.