Cargando…

Sprint Acceleration Mechanical Outputs Derived from Position– or Velocity–Time Data: A Multi-System Comparison Study

To directly compare five commonly used on-field systems (motorized linear encoder, laser, radar, global positioning system, and timing gates) during sprint acceleration to (i) measure velocity–time data, (ii) compute the main associated force–velocity variables, and (iii) assess their respective int...

Descripción completa

Detalles Bibliográficos
Autores principales: Fornasier-Santos, Charly, Arnould, Axelle, Jusseaume, Jérémy, Millot, Benjamin, Guilhem, Gaël, Couturier, Antoine, Samozino, Pierre, Slawinski, Jean, Morin, Jean-Benoît
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698850/
https://www.ncbi.nlm.nih.gov/pubmed/36433206
http://dx.doi.org/10.3390/s22228610
Descripción
Sumario:To directly compare five commonly used on-field systems (motorized linear encoder, laser, radar, global positioning system, and timing gates) during sprint acceleration to (i) measure velocity–time data, (ii) compute the main associated force–velocity variables, and (iii) assess their respective inter-trial reliability. Eighteen participants performed three 40 m sprints, during which five systems were used to simultaneously and separately record the body center of the mass horizontal position or velocity over time. Horizontal force–velocity mechanical outputs for the two best trials were computed following an inverse dynamic model and based on an exponential fitting of the position- or velocity-time data. Between the five systems, the maximal running velocity was close (7.99 to 8.04 m.s(−1)), while the time constant showed larger differences (1.18 to 1.29 s). Concurrent validity results overall showed a relative systematic error of 0.86 to 2.28% for maximum and theoretically maximal velocity variables and 4.78 to 12.9% for early acceleration variables. The inter-trial reliability showed low coefficients of variation (all <5.74%), and was very close between all of the systems. All of the systems tested here can be considered relevant to measure the maximal velocity and compute the force–velocity mechanical outputs. Practitioners are advised to interpret the data obtained with either of these systems in light of these results.