Cargando…
Signal Recovery from Randomly Quantized Data Using Neural Network Approach
We present an efficient scheme based on a long short-term memory (LSTM) autoencoder for accurate seismic deconvolution in a multichannel setup. The technique is beneficial for compressing massive amounts of seismic data. The proposed robust estimation ensures the recovery of sparse reflectivity from...
Autor principal: | Al-Shaikhi, Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698862/ https://www.ncbi.nlm.nih.gov/pubmed/36433310 http://dx.doi.org/10.3390/s22228712 |
Ejemplares similares
-
Quantization and Deployment of Deep Neural Networks on Microcontrollers
por: Novac, Pierre-Emmanuel, et al.
Publicado: (2021) -
Degree-Aware Graph Neural Network Quantization
por: Fan, Ziqin, et al.
Publicado: (2023) -
Quantization Framework for Fast Spiking Neural Networks
por: Li, Chen, et al.
Publicado: (2022) -
Trainable quantization for Speedy Spiking Neural Networks
por: Castagnetti, Andrea, et al.
Publicado: (2023) -
QONNX: Representing Arbitrary-Precision Quantized Neural Networks
por: Pappalardo, Alessandro, et al.
Publicado: (2022)